如圖,A,E,B,D在同一直線上,在△ABC與△DEF中,AB=DE,AC=DF,AC∥DF.
(1)求證:△ABC≌△DEF;
(2)你還可以得到的結(jié)論是______.(寫出一個即可,不再添加其它線段,不再標注或使用其它字母)

證明:(1)∵AC∥DF,
∴∠A=∠D,
在△ABC和△DEF中,
∴△ABC≌△DEF(SAS);

(2)(答案不唯一),利用全等三角形的性質(zhì)可得:AE=DB,∠C=∠F,等.
分析:(1)已知AB=DE、AC=DF,只需找AB和AC的夾角及DE和DF的夾角相等,就可用SAS方法判斷.
(2)由(1)中證得的△ABC≌△DEF,再根據(jù)全等三角形的性質(zhì)可得AE=DB,∠C=∠F,等.
點評:此題主要考查了全等三角形SAS這一判定定理及全等三角形的性質(zhì)的應用.題目是一道開放題,在很多的結(jié)論中選擇一個即可,一般選擇比較明顯的,這點比較重要.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

14、如圖,已知⊙P的半徑OD=5,OD⊥AB,垂足是G,OG=3,則弦AB=
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知A,B兩點是反比例函數(shù)y=
4x
(x>0)的圖象上任意兩點,過A,B兩點分別作y軸的垂線,垂足分別為C,D,連接AB,AO,BO,梯形ABDC的面積為5,則△AOB的面積為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,AB=24,BC=26.先順次連接矩形各邊中點得菱形,又順次連接菱形各邊中點得矩形,再順次連接矩形各邊中點得菱形,照此繼續(xù),…,第10次連接的圖形的面積是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

6、如圖是某幾何體的三視圖,則這個幾何體是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖AB是⊙O的直徑,⊙O過BC的中點D,且DE⊥AC于點E.
(1)求證:DE是⊙O的切線;
(2)若∠C=30°,CD=
3
,求⊙O的半徑.

查看答案和解析>>

同步練習冊答案