如圖所示,在直角坐標系xOy中,A,B是x軸上兩點,以AB為直徑的圓交y軸于點C,設過A、B、C三點的拋物線關系為y=x2-mx+n,若方程x2-mx+n=0兩根倒數(shù)和為-2.
(1)求n的值;
(2)求此拋物線的關系式.
(1)由題意,設A(x1,0),B(x2,0),C(0,n)
∵OA=-x1,OB=x2,又CO⊥AB,
∴CO2=AO•OB,
即n2=-x1x2;
又∵x1,x2是方程x2-mx+n=0的兩根,
∴x1•x2=n,
∴n2=-n,
∴n1=-1,n2=0(舍去),
∴n=-1.

(2)∵x1,x2是方程x2-mx+n=0的兩根,
∴x1+x2=m.
又∵n=-1,
∴x1x2=-1,
1
x1
+
1
x2
=
x1+x2
x1x2
=
m
-1
=-2
,
∴m=2,
∴所求拋物線的關系式為y=x2-2x-1.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=x2+bx+c過點A(-4,-3),與y軸交于點B,對稱軸是x=-3,請解答下列問題:
(1)求拋物線的解析式.
(2)若和x軸平行的直線與拋物線交于C,D兩點,點C在對稱軸左側,且CD=8,求△BCD的面積.
注:拋物線y=ax2+bx+c(a≠0)的對稱軸是x=-
b
2a

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,一拋物線的對稱軸為直線x=1,與y軸負半軸交于C點,與x軸交于A、B兩點,其中B點的坐標為(3,0),且OB=OC.
(1)求此拋物線的解析式;
(2)若點G(2,y)是該拋物線上一點,點P是直線AG下方的拋物線上一動點,當點P運動到什么位置時,△APG的面積最大?求出此時P點的坐標和△APG的最大面積.
(3)若平行于x軸的直線與該拋物線交于M、N兩點(其中點M在點N的右側),在x軸上是否存在點Q,使△MNQ為等腰直角三角形?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點,A點在原點的左側,B點的坐標為(3,0),與y軸交于C(0,-3)點,點P是直線BC下方的拋物線上一動點.
(1)求這個二次函數(shù)的解析式;
(2)當點P運動到什么位置時,四邊形ABPC的面積最大,并求出此時P點的坐標和四邊形ABPC的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,P是拋物線y2=x2-6x+9對稱軸上的一個動點,直線x=t平行于y軸,分別與直線y=x、拋物線y2交于點A、B.若△ABP是以點A或點B為直角頂點的等腰直角三角形,求滿足條件的t的值,則t=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

當行駛中的汽車撞到物體時,汽車的損壞程度通常用“撞擊影響”來衡量.汽車的撞擊影響I可以用汽車行駛速度v(km/min)來表示,下表是某種型號的汽車行駛速度與撞擊影響的實驗數(shù)據(jù):
v(km/min)01234
I0281832
(1)請你以上表中各對數(shù)據(jù)(v,I)作為點的坐標,嘗試在右圖所示的坐標系中畫出I關于v的函數(shù)圖象.
(2)①填寫下表:
v(km/min)1234
v2
I
________________________
②根據(jù)所填表中數(shù)據(jù)呈現(xiàn)的規(guī)律,猜想出用v表示I的二次函數(shù)的關系式:______.
③若在一次交通事故中,測得汽車的撞擊影響I=16.請你計算此時汽車的行駛速度為______km/min(精確到0.01km/min)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在直角坐標系中,點C(
3
,0),點D(0,1),CD的中垂線交CD于點E,交y軸于點B,點P從點C出發(fā)沿CO方向以每秒2
3
個單位的速度運動,同時點Q從原點O出發(fā)沿OD方向以每秒1個單位的速度向點D運動,當點Q到達點D時,點P,Q同時停止運動,設運動的時間為秒.
(1)求出點B的坐標;
(2)當t為何值時,△POQ與△COD相似?
(3)當點P在x軸負半軸上時,記四邊形PBEQ的面積為S,求S關于t的函數(shù)關系式,并寫出自變量的取值范圍;
(4)在點P、Q的運動過程中,將△POQ繞點O旋轉180°,點P的對應點P′,點Q的對應點Q′,當線段P′Q′與線段BE有公共點時,拋物線y=ax2+1經(jīng)過P′Q′的中點,此時的拋物線與x軸正半軸交于點M.由已知,直接寫出:①a的取值范圍為______;②點M移動的平均速度是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

寧波市土地利用現(xiàn)狀通過國土資源部驗收,我市在節(jié)約集約用地方面已走在全國前列.1996---2004年,市區(qū)建設用地總量從33萬畝增加到48萬畝,相應的年GDP從295億元增加到985億.寧波市區(qū)年GDPy(億元)與建設用地總量x(萬畝)之間存在著如圖所示的一次函數(shù)關系.
(1)求y關于x的函數(shù)關系式.
(2)據(jù)調(diào)查2005年市區(qū)建設用地比2004年增加4萬畝,如果這些土地按以上函數(shù)關系式開發(fā)使用,那么2005年市區(qū)可以新增GDP多少億元?
(3)按以上函數(shù)關系式,我市年GDP每增加1億元,需增建設用地多少萬畝?(精確到0.001萬畝).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

拋物線y=-x2+2x+3與x軸交于A、B兩點(A在B的左側),與y軸交于點D,頂點為C
(1)求A、B、C、D各點坐標;
(2)求四邊形ABCD的面積;
(3)拋物線上是否存在點P,使△PAB的面積是△ABC的面積的2倍?若存在,請直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案