【題目】如圖1,△ABC和△DEF中,AB=AC,DE=DF,∠A=∠D。
(1)求證: ;
(2)由(1)中的結(jié)論可知,等腰三角形ABC中,當(dāng)頂角∠A的大小確定時(shí),它的對(duì)邊(即底邊BC)與鄰邊(即腰AB或AC)的比值也就確定,我們把這個(gè)比值記作T(A),即,如T(60°)=1.
①理解鞏固:T(90°)= ,T(120°)= ,若α是等腰三角形的頂角,則T(α)的取值范圍是 ;
②學(xué)以致用:如圖2,圓錐的母線長為9,底面直徑PQ=8,一只螞蟻從點(diǎn)P沿著圓錐的側(cè)面爬行到點(diǎn)Q,求螞蟻爬行的最短路徑長(精確到0.1)。
(參考數(shù)據(jù):T(160°)≈1.97,T(80°)≈1.29,T(40°)≈0.68)
【答案】(1)證明見解析;(2) 0<T(a)<2 11.6
【解析】試題分析:(1)證明△ABC∽△DEF,根據(jù)相似三角形的性質(zhì)解答即可;
(2)①根據(jù)等腰直角三角形的性質(zhì)和等腰三角形的性質(zhì)進(jìn)行計(jì)算即可;
②根據(jù)圓錐的側(cè)面展開圖的知識(shí)和扇形的弧長公式計(jì)算,得到扇形的圓心角,根據(jù)T(A)的定義解答即可.
試題解析:(1)∵AB=AC,DE=DF,
∴,
又∵∠A=∠D,
∴△ABC∽△DEF,
∴;
(2)①如圖1,∠A=90°,AB=AC,
則,
∴T(90°)=,
如圖2,∠A=120°,AB=AC,
作AD⊥BC于D,
則∠B=30°,
∴BD=AB,
∴BC= AB,
∴T(120°)=
∵AB-AC<BC<AB+AC,
∴0<T(α)<2,
②∵圓錐的底面直徑PQ=8,
∴圓錐的底面周長為8π,即側(cè)面展開圖扇形的弧長為8π,
設(shè)扇形的圓心角為n°,
則=8π,
解得,n=160,
∵T(80°)≈1.29,
∴螞蟻爬行的最短路徑長為1.29×9≈11.6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)如下表:
最高氣溫(℃) | 25 | 26 | 27 | 28 |
天 數(shù) | 1 | 1 | 2 | 3 |
則這組數(shù)據(jù)的中位數(shù)與眾數(shù)分別是( )
A.27,28B.27.5,28C.28,27D.26.5,27
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線與x軸負(fù)半軸交于點(diǎn)A,頂點(diǎn)為B,且對(duì)稱軸與x軸交于點(diǎn)C。
(1)求點(diǎn)B的坐標(biāo)(用含m的代數(shù)式表示);
(2)D為BD中點(diǎn),直線AD交y軸于E,若點(diǎn)E的坐標(biāo)為(0,2),求拋物線的解析式;
(3)在(2)的條件下,點(diǎn)M在直線BO上,且使得△AMC的周長最小,P在拋物線上,Q在直線BC上,若以A、M、P、Q為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李老師為了了解所教班級(jí)學(xué)生完成數(shù)學(xué)課前預(yù)習(xí)的具體情況,對(duì)本班部分學(xué)生進(jìn)行了為期半個(gè)月的跟蹤調(diào)查,他將調(diào)查結(jié)果分為四類:A、很好;B、較好;C、一般;D、較差,并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)李老師一共調(diào)查了多少名同學(xué)?
(2)C類女生有 名,D類男生有 名,將上面條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)為了共同進(jìn)步,李老師想從被調(diào)查的A類和D類學(xué)生中各隨機(jī)選取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請(qǐng)用列表法或畫樹形圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(diǎn)(﹣1,0),對(duì)稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣,y2)、點(diǎn)C(,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結(jié)論有( 。
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請(qǐng)寫出命題“等角的余角相等”的條件和結(jié)論;這個(gè)命題是真命題嗎?如果是,請(qǐng)你證明;如果不是,請(qǐng)給出反例.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB≠AD,對(duì)角線AC與BD相交于點(diǎn)O,OE⊥BD交AD于E,若△ABE的周長為12cm,則平行四邊形ABCD的周長是( )
A.40cm
B.24cm
C.48cm
D.無法確定
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com