下列命題錯誤的是( 。
A.對角線垂直且相等的四邊形是正方形
B.對角線互相垂直平分的四邊形為菱形
C.直角三角形的兩直角邊長是3和4,則斜邊長是5
D.順次連接四邊形各邊中點得到的是矩形,則該四邊形的對角線相互垂直
A

試題分析:A、對角線垂直、相等且平分的四邊形是正方形,故原來的說法是錯誤的;
B、對角線互相垂直平分的四邊形是菱形是正確的;
C、直角三角形的兩直角邊長是3和4,則斜邊的長為5是正確的;
D、順次連接四邊形各邊中點得到的是矩形,則該四邊形的對角線相互垂直是正確的.
故選A.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,正六邊形ABCDEF的邊長為a,P是BC邊上一動點,過P作PM∥AB交AF于M,作PN∥CD交DE于N.
(1)①∠MPN=          
②求證:PM+PN=3a;
(2)如圖2,點O是AD的中點,連接OM、ON,求證:OM=ON;
(3)如圖3,點O是AD的中點,OG平分∠MON,判斷四邊形OMGN是否為特殊四邊形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

小明在一次數(shù)學興趣小組活動中,對一個數(shù)學問題作如下探究:
問題情境:如圖1,四邊形ABCD中,AD∥BC,點E為DC邊的中點,連接AE并延長交BC的延長線于點F,求證:S四邊形ABCD=SABF(S表示面積)

問題遷移:如圖2:在已知銳角∠AOB內有一個定點P.過點P任意作一條直線MN,分別交射線OA、OB于點M、N.小明將直線MN繞著點P旋轉的過程中發(fā)現(xiàn),△MON的面積存在最小值,請問當直線MN在什么位置時,△MON的面積最小,并說明理由.

實際應用:如圖3,若在道路OA、OB之間有一村莊Q發(fā)生疫情,防疫部門計劃以公路OA、OB和經(jīng)過防疫站P的一條直線MN為隔離線,建立一個面積最小的三角形隔離區(qū)△MON.若測得∠AOB=66°,∠POB=30°,OP=4km,試求△MON的面積.(結果精確到0.1km2)(參考數(shù)據(jù):sin66°≈0.91,tan66°≈2.25,≈1.73)
拓展延伸:如圖4,在平面直角坐標系中,O為坐標原點,點A、B、C、P的坐標分別為(6,0)(6,3)()、(4、2),過點p的直線l與四邊形OABC一組對邊相交,將四邊形OABC分成兩個四邊形,求其中以點O為頂點的四邊形面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

邊長為2的正方形ABCD的兩頂點A、C分別在正方形EFGH的兩邊DE、DG上(如圖1),現(xiàn)將正方形ABCD繞D點順時針旋轉,當A點第一次落在DF上時停止旋轉,旋轉過程中, AB邊交DF于點M,BC邊交DG于點N.
(1)求邊DA在旋轉過程中所掃過的面積;
(2)旋轉過程中,當MN和AC平行時(如圖2),求正方形ABCD旋轉的度數(shù);
(3)如圖3,設△MBN的周長為p,在旋轉正方形ABCD的過程中,p值是否有變化?請證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

閱讀并操作:
如圖①,這是由十個邊長為1的小正方形組成的一個圖形,對這個圖形進行適當分割(如圖②),然后拼接成新的圖形(如圖③).拼接時不重疊、無空隙,并且拼接后新圖形的頂點在所給正方形網(wǎng)格圖中的格點上(網(wǎng)格圖中每個小正方形邊長都為1).

請你參照上述操作過程,將由圖①所得到的符合要求的新圖形畫在下邊的正方形網(wǎng)格圖中.
(1)新圖形為平行四邊形;

(2)新圖形為等腰梯形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連結AG、CF.
(1)求證:①△ABG≌△AFG; ②BG=GC;
(2)求△FGC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,D、E分別是AB、AC的中點,BE=2DE,延長DE到點F,使得EF=BE,連接CF.
(1)求證:四邊形BCFE是菱形;
(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,計算∠A+∠B+∠C+∠E+∠F+∠AGF=        °

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,正方形ABCD中,AB=1,點P是對角線AC上的一點,分別以AP、PC為對角線作正方形,則兩個小正方形的周長的和是_________.

查看答案和解析>>

同步練習冊答案