【題目】已知,點(diǎn)M是二次函數(shù)y=ax2(a>0)圖象上的一點(diǎn),點(diǎn)F的坐標(biāo)為(0,),直角坐標(biāo)系中的坐標(biāo)原點(diǎn)O與點(diǎn)M,F(xiàn)在同一個(gè)圓上,圓心Q的縱坐標(biāo)為.
(1)求a的值;
(2)當(dāng)O,Q,M三點(diǎn)在同一條直線上時(shí),求點(diǎn)M和點(diǎn)Q的坐標(biāo);
(3)當(dāng)點(diǎn)M在第一象限時(shí),過(guò)點(diǎn)M作MN⊥x軸,垂足為點(diǎn)N,求證:MF=MN+OF.
【答案】(1)y=x2;(2)M1(,),Q1(,),M2(﹣,),Q2(﹣,);(3)詳見(jiàn)解析.
【解析】
試題分析:(1)設(shè)Q(m,),F(xiàn)(0,),由QO=QF,根據(jù)勾股定理列出方程即可求得a值;(2)設(shè)M(t,t2),Q(m,),根據(jù)KOM=KOQ,求出t、m的關(guān)系,根據(jù)QO=QM列出方程即可解決問(wèn)題.(3)設(shè)M(n,n2)(n>0),則N(n,0),F(xiàn)(0,),利用勾股定理求出MF即可解決問(wèn)題.
試題解析:(1)∵圓心O的縱坐標(biāo)為,
∴設(shè)Q(m,),F(xiàn)(0,),
∵QO=QF,
∴m2+()2=m2+(﹣)2,
∴a=1,
∴拋物線為y=x2.
(2)∵M在拋物線上,設(shè)M(t,t2),Q(m,),
∵O、Q、M在同一直線上,
∴KOM=KOQ,
∴=,
∴m=,
∵QO=QM,
∴m2+()2=(m﹣t)2=(﹣t2)2,
整理得到:﹣t2+t4+t2﹣2mt=0,
∴4t4+3t2﹣1=0,
∴(t2+1)(4t2﹣1)=0,
∴t1=,t2=﹣,
當(dāng)t1=時(shí),m1=,
當(dāng)t2=﹣時(shí),m2=﹣.
∴M1(,),Q1(,),M2(﹣,),Q2(﹣,).
(3)設(shè)M(n,n2)(n>0),
∴N(n,0),F(xiàn)(0,),
∴MF===n2+,MN+OF=n2+,
∴MF=MN+OF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)P(x,y)關(guān)于x軸對(duì)稱的點(diǎn)P1為______;關(guān)于y軸對(duì)稱的點(diǎn)P2為______;關(guān)于原點(diǎn)的對(duì)稱點(diǎn)P3為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算sin20°-cos20°的值是(精確到0.000 1)( )
A. -0.597 6 B. 0.597 6
C. -0.597 7 D. 0.597 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各式從左到右的變形中,屬于因式分解的是( )
A. a(x+y)=ax+ayB. x2-2x+1=x(x-2)+1
C. 6ab=2a.3bD. x2-8x+16=(x-4)2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】[(-6)3]4 .(b2-ac)等于( )
A. -612b2-b2c B. 10a5-b2c C. 612b2-612ac D. b4c -a4c
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)P(-2,3)關(guān)于y軸的對(duì)稱點(diǎn)的坐標(biāo)是( )
A.(2,3)B.(-2,3)C.(2,-3)D.(-2,-3)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com