如圖,過點B作DB⊥AB于點B,使BD=數(shù)學公式,在AD上截取DE=BD,在AB上截取AC=AE,則數(shù)學公式=________.


分析:設(shè)DB=x,利用BD=可得AB=2x,根據(jù)AD上截取DE=BD,在AB上截取AC=AE,分別表示出BC和AB后求比即可.
解答:DB=x,
∵BD=
∴AB=2x,
∴由勾股定理得:AD=x,
∵DE=BD,AC=AE,
∴DE=DB=x,AC=AE=AD-DE=(-1)x,
BC=AB-AC=2x-(-1)x=(3-)x,
==,
故答案為:
點評:本題考查了含30°角的直角三角形及勾股定理的知識,解題的關(guān)鍵是利用勾股定理求得直角三角形的斜邊的長.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•鹽城)如圖①,若二次函數(shù)y=
3
6
x2+bx+c的圖象與x軸交于A(-2,0),B(3,0)兩點,點A關(guān)于正比例函數(shù)y=
3
x的圖象的對稱點為C.
(1)求b、c的值;
(2)證明:點C在所求的二次函數(shù)的圖象上;
(3)如圖②,過點B作DB⊥x軸交正比例函數(shù)y=
3
x的圖象于點D,連結(jié)AC,交正比例函數(shù)y=
3
x的圖象于點E,連結(jié)AD、CD.如果動點P從點A沿線段AD方向以每秒2個單位的速度向點D運動,同時動點Q從點D沿線段DC方向以每秒1個單位的速度向點C運動.當其中一個點到達終點時,另一個點隨之停止運動,連結(jié)PQ、QE、PE.設(shè)運動時間為t秒,是否存在某一時刻,使PE平分∠APQ,同時QE平分∠PQC?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,過點B作DB⊥AB于點B,使BD=
1
2
AB
,在AD上截取DE=BD,在AB上截取AC=AE,則
BC
AB
=
3-
5
2
3-
5
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖①,若二次函數(shù)y=數(shù)學公式x2+bx+c的圖象與x軸交于A(-2,0),B(3,0)兩點,點A關(guān)于正比例函數(shù)y=數(shù)學公式x的圖象的對稱點為C.
(1)求b、c的值;
(2)證明:點C在所求的二次函數(shù)的圖象上;
(3)如圖②,過點B作DB⊥x軸交正比例函數(shù)y=數(shù)學公式x的圖象于點D,連結(jié)AC,交正比例函數(shù)y=數(shù)學公式x的圖象于點E,連結(jié)AD、CD.如果動點P從點A沿線段AD方向以每秒2個單位的速度向點D運動,同時動點Q從點D沿線段DC方向以每秒1個單位的速度向點C運動.當其中一個點到達終點時,另一個點隨之停止運動,連結(jié)PQ、QE、PE.設(shè)運動時間為t秒,是否存在某一時刻,使PE平分∠APQ,同時QE平分∠PQC?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年江蘇省鹽城市中考數(shù)學試卷(解析版) 題型:解答題

如圖①,若二次函數(shù)y=x2+bx+c的圖象與x軸交于A(-2,0),B(3,0)兩點,點A關(guān)于正比例函數(shù)y=x的圖象的對稱點為C.
(1)求b、c的值;
(2)證明:點C在所求的二次函數(shù)的圖象上;
(3)如圖②,過點B作DB⊥x軸交正比例函數(shù)y=x的圖象于點D,連結(jié)AC,交正比例函數(shù)y=x的圖象于點E,連結(jié)AD、CD.如果動點P從點A沿線段AD方向以每秒2個單位的速度向點D運動,同時動點Q從點D沿線段DC方向以每秒1個單位的速度向點C運動.當其中一個點到達終點時,另一個點隨之停止運動,連結(jié)PQ、QE、PE.設(shè)運動時間為t秒,是否存在某一時刻,使PE平分∠APQ,同時QE平分∠PQC?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年初中畢業(yè)升學考試(江蘇鹽城卷)數(shù)學(解析版) 題型:解答題

如圖①,若二次函數(shù)的圖象與x軸交于點A(-2,0),B(3,0)兩點,點A關(guān)于正比例函數(shù)的圖象的對稱點為C。

(1)求b、c的值;

(2)證明:點C 在所求的二次函數(shù)的圖象上;

(3)如圖②,過點B作DB⊥x軸交正比例函數(shù)的圖象于點D,連結(jié)AC,交正比例函數(shù)的圖象于點E,連結(jié)AD、CD。如果動點P從點A沿線段AD方向以每秒2個單位的速度向點D運動,同時動點Q從點D沿線段DC方向以每秒1個單位的速度向點C運動,當其中一個到達終點時,另一個隨之停止運動,連結(jié)PQ、QE、PE,設(shè)運動時間為t秒,是否存在某一時刻,使PE平分∠APQ,同時QE平分∠PQC,若存在,求出t的值;若不存在,請說明理由。

 

 

查看答案和解析>>

同步練習冊答案