作業(yè)寶如圖,△ABC中BD、CD平分∠ABC、∠ACB,過D作直線平行于BC,交AB、AC于E、F,AB=5,AC=7,BC=8,△AEF的周長為


  1. A.
    13
  2. B.
    12
  3. C.
    15
  4. D.
    20
B
分析:根據(jù)平行線性質(zhì)和角平分線定義得出∠EDB=∠EBD,推出BE=ED,同理DF=CF,求出△AEF的周長=AB+AC,代入求出即可.
解答:∵EF∥BC,
∴∠EDB=∠DBC,
∵BD平分∠ABC,
∴∠EBD=∠CBD,
∴∠EDB=∠EBD,
∴BE=ED,
同理DF=CF,
∴△AEF的周長是AE+EF+AF
=AE+ED+DF+AF
=AE+BE+CF+AF
=AB+AC
=5+7
=12.
故選B.
點評:本題考查了平行線性質(zhì),等腰三角形的判定,角平分線定義的應用,關(guān)鍵是推出AE+EF+AF=AB+AC
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,△ABC中BD、CD平分∠ABC、∠ACB,過D作直線平行于BC,交AB、AC于E、F,當∠A的位置及大小變化時,線段EF和BE+CF的大小關(guān)系( 。
A、EF>BE+CFB、EF=BE+CFC、EF<BE+CFD、不能確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

8、如圖,△ABC中BD是角平分線,∠A=∠CBD=36°,則圖中等腰三角形有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

19、如圖,△ABC中BD、CD平分∠ABC、∠ACB,過D作直線平行于BC,交AB、AC于E、F,求證:EF=BE+CF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC中BD、CD平分∠ABC、∠ACB,過D作EF∥BC,交AB、AC于E、F,若EF=8,BE=3,則CF=
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,△ABC中BD、CD平分∠ABC、∠ACB,過D作直線平行于BC,交AB、AC于E、F,AB=5,AC=7,BC=8,△AEF的周長為(  )
A、13B、12C、15D、20

查看答案和解析>>

同步練習冊答案