【題目】如圖,直線(xiàn)AB、CD相交于點(diǎn)O,OE⊥OD,OE平分∠AOF.
(1)∠BOD與∠DOF相等嗎?請(qǐng)說(shuō)明理由.
(2)若∠DOF=∠BOE,求∠AOD的度數(shù).
【答案】(1)∠BOD=∠DOF,理由詳見(jiàn)解析;(2)∠AOD=150°.
【解析】
(1)由OE⊥OD知∠EOF+∠DOF=90°,∠AOE+∠BOD=90°,根據(jù)∠AOE=∠EOF即可得∠BOD=∠DOF;
(2)由∠DOF=∠BOE可∠DOF=x°,則∠BOE=4x°,∠BOD=x°,從而得∠DOE=∠BOE﹣∠BOD=3x°,根據(jù)∠DOE=90°可得x的值,繼而根據(jù)∠AOD=180°﹣∠BOD即可得出答案.
解:(1)∠BOD=∠DOF,
∵OE⊥OD,
∴∠DOE=90°,
∴∠EOF+∠DOF=90°,∠AOE+∠BOD=90°,
∵OE平分∠AOF,
∴∠AOE=∠EOF,
∴∠BOD=∠DOF;
(2)∵∠DOF=∠BOE,
∴設(shè)∠DOF=x°,則∠BOE=4x°,∠BOD=x°,
∴∠DOE=∠BOE﹣∠BOD=3x°,
∵∠DOE=90°,
∴3x=90,即x=30,
∴∠BOD=30°,
∴∠AOD=180°﹣∠BOD=150°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°,點(diǎn)D在邊OA上,將圖中的△COD繞點(diǎn)O按每秒10°的速度沿順時(shí)針?lè)较蛐D(zhuǎn)一周,在旋轉(zhuǎn)的過(guò)程中,在第 秒時(shí),邊CD恰好與邊AB平行.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,拋物線(xiàn)y=ax2+bx+c與x軸交于兩個(gè)不同的點(diǎn)A(﹣4,0),B(1,0),與y軸正半軸交于點(diǎn)C,tan∠CAB= .
(1)求拋物線(xiàn)的解析式并驗(yàn)證點(diǎn)Q(﹣1,3)是否在拋物線(xiàn)上;
(2)點(diǎn)M是線(xiàn)段AC上一動(dòng)點(diǎn)(不與A,C重合),過(guò)點(diǎn)M作x軸的垂線(xiàn),垂足為H,交拋物線(xiàn)于點(diǎn)N,試判斷當(dāng)MN為最大值時(shí),以MN為直徑的圓與y軸的位置關(guān)系并說(shuō)明理由;
(3)已知過(guò)點(diǎn)B的直線(xiàn)y=x﹣1交拋物線(xiàn)于另一點(diǎn)E,問(wèn):在x軸上是否存在點(diǎn)P,使以點(diǎn)P,A,Q為頂點(diǎn)的三角形與△AEB相似?若存在,請(qǐng)求出所有符合要求的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“趙爽炫圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國(guó)古代數(shù)學(xué)的驕傲,如圖所示的“趙爽炫圖”是由四個(gè)全等直角三角形和一個(gè)小正方形拼成的一個(gè)大正方形,設(shè)直角三角形較長(zhǎng)直角邊長(zhǎng)為,較短直角邊長(zhǎng)為,若(a+b)2=21,大正方形的面積為13,則小正方形的邊長(zhǎng)為( )
A. B. 2 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線(xiàn)y= x與反比例函數(shù)y= 在第一象限內(nèi)的圖象相交于點(diǎn)A(m,3).
(1)求該反比例函數(shù)的關(guān)系式;
(2)將直線(xiàn)y= x沿y軸向上平移8個(gè)單位后與反比例函數(shù)在第一象限內(nèi)的圖象相交于點(diǎn)B,連接AB,這時(shí)恰好AB⊥OA,求tan∠AOB的值;
(3)在(2)的條件下,在射線(xiàn)OA上存在一點(diǎn)P,使△PAB∽△BAO,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,A、B、C分別為數(shù)軸上的三點(diǎn),A點(diǎn)對(duì)應(yīng)的數(shù)為-200,B點(diǎn)對(duì)應(yīng)的數(shù)為-20,C點(diǎn)對(duì)應(yīng)的數(shù)為40.甲從C點(diǎn)出發(fā),以6單位/秒的速度向左運(yùn)動(dòng).
(1)當(dāng)甲在B點(diǎn)、C點(diǎn)之間運(yùn)動(dòng)時(shí),設(shè)運(yùn)時(shí)間為x秒,請(qǐng)用x的代數(shù)式表示:
甲到A點(diǎn)的距離: ;
甲到B點(diǎn)的距離: ;
甲到C點(diǎn)的距離: .
(2)當(dāng)甲運(yùn)動(dòng)到B點(diǎn)時(shí),乙恰好從A點(diǎn)出發(fā),以4單位/秒的速度向右運(yùn)動(dòng),設(shè)兩人在數(shù)軸上的D點(diǎn)相遇,求D點(diǎn)對(duì)應(yīng)的數(shù);
(3)若當(dāng)甲運(yùn)動(dòng)到B點(diǎn)時(shí),乙恰好從A點(diǎn)出發(fā),以4單位/秒的速度向左運(yùn)動(dòng),設(shè)兩人在數(shù)軸上的E點(diǎn)相遇,求E點(diǎn)對(duì)應(yīng)的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn) D 是等腰直角 △ABC 腰 BC 上的中點(diǎn),點(diǎn)B 、B′ 關(guān)于 AD 對(duì)稱(chēng),且 BB′ 交AD 于 F,交 AC 于 E,連接 FC 、 AB′,下列說(shuō)法:① ∠BAD=30°; ② ∠BFC=135°;③ AF=2B′ C;正確的個(gè)數(shù)是()
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列一元一次方程解應(yīng)用題:
2018年是我國(guó)改革開(kāi)放40周年,改革開(kāi)放是當(dāng)代中國(guó)發(fā)展進(jìn)步的必由之路,是實(shí)現(xiàn)中國(guó)夢(mèng)的必由之路. 2018年10月20日在國(guó)家大劇院舉行了《可愛(ài)的中國(guó)》慶祝改革開(kāi)放40周年音樂(lè)會(huì). 本次演出的票價(jià)分為以下幾個(gè)類(lèi)別,如下表所示:
演出票類(lèi)別 | A類(lèi) | B類(lèi) | C類(lèi) | D類(lèi) | E類(lèi) |
演出票單價(jià)(元/張) | 300 | 280 | 240 | 180 | 100 |
小宇購(gòu)買(mǎi)了A類(lèi)和C類(lèi)的演出票共10張,他發(fā)現(xiàn)這10張演出票的總價(jià)恰好可以購(gòu)買(mǎi)8張B類(lèi)票和4張E類(lèi)票. 問(wèn)小宇購(gòu)買(mǎi)A類(lèi)和C類(lèi)的演出票各幾張?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,五邊形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,則∠BAE的度數(shù)為何?( 。
A. 115 B. 120 C. 125 D. 130
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com