分析 (1)由平行四邊形的性質(zhì)得出AB=CD,AD∥BC,∠B=∠D,得出∠1=∠DCE,證出∠AFB=∠1,由AAS證明△ABF≌△CDE即可;
(2)由(1)得∠1=∠DCE=65°,由平行四邊形的性質(zhì)和三角形內(nèi)角和定理即可得出結(jié)果.
解答 (1)證明:∵四邊形ABCD是平行四邊形,
∴AB=CD,AD∥BC,∠B=∠D,
∴∠1=∠BCE,
∵AF∥CE,
∴∠BCE=∠AFB,
∴∠1=∠AFB,
在△ABF和△CDE中,$\left\{\begin{array}{l}{∠B=∠D}&{\;}\\{∠AFB=∠1}&{\;}\\{AB=CD}&{\;}\end{array}\right.$,
∴△ABF≌△CDE(AAS);
(2)解:
∵CE平分∠BCD,
∴∠DCE=∠BCE=∠1=65°,
∴∠B=∠D=180°-2×65°=50°.
點(diǎn)評(píng) 本題考查了平行四邊形的性質(zhì)、全等三角形的判定與性質(zhì)、平行線的性質(zhì)、三角形內(nèi)角和定理;熟練掌握平行四邊形的性質(zhì),證明三角形全等是解決問(wèn)題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\left\{\begin{array}{l}{3x-2y=1}\\{y=4z+1}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{a=3}\\{2b-3a=2}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{\frac{1}{x}+y=3}\\{\frac{1}{y}+2x=4}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{mn=-1}\\{m+n=3}\end{array}\right.$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com