【題目】如圖,矩形紙片ABCD,AB=4BC=3,點(diǎn)PBC邊上,將△CDP沿DP折疊,點(diǎn)C落在點(diǎn)E處,PE.、DE分別交AB于點(diǎn)O、F,且OP=OF,則BP的長(zhǎng)為_(kāi)_____.

【答案】

【解析】

根據(jù)折疊的性質(zhì)可得出DC=DECP=EP,由∠EOF=∠BOP、∠B=∠E、OP=OF可得出△OEF≌△OBP,根據(jù)全等三角形的性質(zhì)可得出OE=OBEF=BP,設(shè)BF=EP=CP=x,則AF=4-x,BP=3-x=EFDF=DE-EF=4-3-x=x+1,依據(jù)Rt△ADF中,AF2+AD2=DF2,求出x的值,即可得出BP的長(zhǎng).

解:根據(jù)折疊可知:△DCP≌△DEP,

∴DC=DE=4,CP=EP

△OEF△OBP中,,

∴△OEF≌△OBPAAS),

∴OE=OB,EF=BP,

∴BF=EP=CP,

設(shè)BF=EP=CP=x,則AF=4-xBP=3-x=EF,DF=DE-EF=4-3-x=x+1,

∵∠A=90°,

∴Rt△ADF中,AF2+AD2=DF2

即(4-x2+32=1+x2,

解得:x=

∴BP=3-x=3-=,

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某數(shù)學(xué)老師為了了解學(xué)生在數(shù)學(xué)學(xué)習(xí)中常見(jiàn)錯(cuò)誤的糾正情況,收集整理了學(xué)生在作業(yè)和考試中的常見(jiàn)錯(cuò)誤,編制了10道選擇題,每題3分,對(duì)他所教的初三(1)班、(2)班進(jìn)行了檢測(cè),如圖表示從兩班各隨機(jī)抽取的10名學(xué)生的得分情況.

1)利用圖中提供的信息,補(bǔ)全下表:

班級(jí)

平均數(shù)/

中位數(shù)/

眾數(shù)/

初三(1)班

__________

24

________

初三(2)班

24

_________

21

2)若把24分以上(含24分)記為優(yōu)秀,兩班各40名學(xué)生,請(qǐng)估計(jì)兩班各有多少名學(xué)生成績(jī)優(yōu)秀;

3)觀察上圖的數(shù)據(jù)分布情況,請(qǐng)通過(guò)計(jì)算說(shuō)明哪個(gè)班的學(xué)生糾錯(cuò)的得分更穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】45°角的直角三角板如圖放置在平面直角坐標(biāo)系中,其中A(-30),B02),則直線BC的解析式為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中,∠C=90°,AC=3,BC=4,點(diǎn)PAB邊上任一點(diǎn),過(guò)P分別作PEACE,PFBCF,則線段EF的最小值是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】8分)現(xiàn)有三張反面朝上的撲克牌:紅桃2、紅桃3、黑桃x1≤x≤13x為奇數(shù)或偶數(shù)).把牌洗勻后第一次抽取一張,記好花色和數(shù)字后將牌放回,重新洗勻第二次再抽取一張.

1)求兩次抽得相同花色的概率;

2)當(dāng)甲選擇x為奇數(shù),乙選擇x為偶數(shù)時(shí),他們兩次抽得的數(shù)字和是奇數(shù)的可能性大小一樣嗎?請(qǐng)說(shuō)明理由.(提示:三張撲克牌可以分別簡(jiǎn)記為紅2、紅3、黑x

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,點(diǎn)D,E,F(xiàn)分別是AB,BC,CA的中點(diǎn),AH是邊BC上的高.

(1)求證:四邊形ADEF是平行四邊形;

(2)求證:DHF=DEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)MRtABC的斜邊AB的中點(diǎn),連接CM,作線段CM的垂直平分線,分別交邊CBCA的延長(zhǎng)線于點(diǎn)D、E,若∠C=90°,AB=20,tanB= ,則DE=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PCBA的延長(zhǎng)線于點(diǎn)P,OF∥BCACAC點(diǎn)E,交PC于點(diǎn)F,連接AF

1)判斷AF⊙O的位置關(guān)系并說(shuō)明理由;

2)若⊙O的半徑為4,AF=3,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,淇淇一家駕車從A地出發(fā),沿著北偏東60°的方向行駛,到達(dá)B地后沿著南偏東50°的方向行駛來(lái)到C地,C地恰好位于A地正東方向上,則( 。

①B地在C地的北偏西50°方向上;

②A地在B地的北偏西30°方向上;

③cos∠BAC=;

④∠ACB=50°.其中錯(cuò)誤的是( 。

A. ①② B. ②④ C. ①③ D. ③④

查看答案和解析>>

同步練習(xí)冊(cè)答案