【題目】如圖,△ABD,△AEC 都是等邊三角形
(1)求證:BE=DC .
(2)設 BE、DC 交于 M,連 AM,求的值.
【答案】(1)見解析 (2)1
【解析】
(1)利用△ABD、△AEC都是等邊三角形,求證△DAC≌△BAE,然后即可得出BE=DC;
(2)在DM上截取DG=MB,連接AG,AM,易證△CAD≌△EAB,可得∠ADC=∠ABE,∠AEB=∠ACD,即可證明△ADG≌△ABM,可得∠DAG=∠BAM,AG=AM,即可判定△MAG為等邊三角形,易得∠CAG=∠EAM,即可證明△CAG≌△EAM,可得CG=ME,即可解題.
(1)∵△ABD、△AEC都是等邊三角形,
∴AD=AB,AE=AC,∠DAB=∠CAE=60°,
∴∠DAC=∠BAC+60°,
∠BAE=∠BAC+60°,
∴∠DAC=∠BAE,
在△DAC和△BAE中,
,
∴△DAC≌△BAE(SAS),
∴BE=DC;
(2)在DM上截取DG=MB,連接AG,AM,
∵△ABD、△AEC等邊三角形,
∴∠BAD=∠CAE=60°,AC=AE,AD=AB,
∴∠BAD+∠BAC=∠BAC+∠CAE,即∠BAE=∠CAD,
在△CAD和△EAB中,
∴△CAD≌△EAB(SAS),
∴∠ADC=∠ABE,∠AEB=∠ACD,
在△ADG和△ABM中,
,
∴△ADG≌△ABM(SAS),
∴∠DAG=∠BAM,AG=AM,
∵∠DAG+∠BAG=60°,
∴∠BAG+∠BAM=60°,即∠MAG=60°,
∴△MAG為等邊三角形,∠MAG+∠CAM=∠CAM+∠CAE,即∠CAG=∠EAM,
∴MA=MG,
在△CAG和△EAM中,
,
∴△CAG≌△EAM(SAS),
∴CG=ME,
∴MD+ME=DG+MG+MC+MG=MB+MC+2MA,
∴=1.
科目:初中數學 來源: 題型:
【題目】有兩把不同的鎖和四把不同的鑰匙,其中兩把鑰匙恰好分別能打開這兩把鎖,其余的鑰匙不能打開這兩把鎖.現在任意取出一把鑰匙去開任意一把鎖.
(1)請用列表或畫樹狀圖的方法表示出上述試驗所有可能結果;
(2)求一次打開鎖的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,、分別平分四邊形的外角和,設,.
(1)若,則 ;
(2)若與相交于點,且,求、所滿足的等量關系式,并說明理由;
(3)如圖②,若,試判斷、的位置關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在等腰直角三角形中,,點在邊上,連接,連接
(1)求證:
(2)點關于直線的對稱點為,連接
①補全圖形并證明
②利用備用圖進行畫圖、試驗、探究,找出當三點恰好共線時點的位置,請直接寫出此時的度數,并畫出相應的圖形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC 中,AE、BF 是角平分線,交于 O 點.
(1)如圖 1,AD 是高,∠BAC=90°,∠C=70°,求∠DAC 和∠BOA 的度數;
(2)如圖 2,若 OE=OF,求∠C 的度數;
(3)如圖 3,若∠C=90°,BC=8,AC=6,S△CEF=4,求 S△AOB.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平面直角坐標系xoy中A(﹣4,6),B(﹣1,2),C(﹣4,1).
(1)作出△ABC關于直線x=1對稱的圖形△A1B1C1并寫出△A1B1C1各頂點的坐標;
(2)將△A1B1C1向左平移2個單位,作出平移后的△A2B2C2,并寫出△A2B2C2各頂點的坐標;
(3)觀察△ABC和△A2B2C2,它們是否關于某直線對稱?若是,請指出對稱軸,并求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:已知在△ABC中,AD⊥BC于D,E是AB的中點,
(1)求證:E點一定在AD的垂直平分線上;
(2)如果CD=9cm,AC=15cm,F點在AC邊上從A點向C點運動速度是3cm/s,求當運動幾秒鐘時.△ADF是等腰三角形?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】青青草原上,灰太狼每天都想著如何抓羊,而且是屢敗屢試,永不言棄,(如圖所示)一天,灰太狼在自家城堡頂部A處測得懶羊羊所在地B處的俯角為60°,然后下到城堡的C處,測得B處的俯角為30°.已知AC=50米,若灰太狼以5m/s的速度從城堡底部D處出發(fā),懶羊羊以3m/s沿DB延長線方向逃跑,灰太狼幾秒鐘后能抓到懶羊羊?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com