如圖,AB是⊙O的直徑,M是⊙O上一點(diǎn),MN⊥AB,垂足為N,P、Q分別是弧AM、弧BM上一點(diǎn)(不與端點(diǎn)重合).若∠MNP=∠MNQ,下面結(jié)論:
①∠PNA=∠QNB;②∠P+∠Q=180°;③∠Q=∠PMN;④PM=QM;⑤MN2=PN•QN.
正確的結(jié)論有( )
A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)
B.
【解析】延長QN交圓O于C,延長MN交圓O于D,如圖:
∵M(jìn)N⊥AB,∴∠MNA=∠MNB=90°,∵∠MNP=∠MNQ,∴∠PNA=∠QNB,故①對(duì);
∵∠P+∠PMN<180°,∴∠P+∠Q<180°,故②錯(cuò);
因?yàn)锳B是⊙O的直徑,MN⊥AB,∴,∵∠PNA=∠QNB,∠ANC=∠QNB,
∴∠PNA=∠ANC,∴P,C關(guān)于AB對(duì)稱,∴,∴,∴∠Q=∠PMN,故③對(duì);
∵∠MNP=∠MNQ,∠Q=∠PMN,∴△PMN∽△MQN,∴MN2=PN•QN,PM不一定等于MQ,所以④錯(cuò)誤,⑤對(duì).
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
例2、如圖,已知四邊形ABCD與四邊形EFGH關(guān)于某條直線對(duì)稱,請做出他們的對(duì)稱軸。
思路探究:(1)請找出圖中的一對(duì)對(duì)應(yīng)點(diǎn)。
(2)線段AE的垂直平分線是我們的要找的對(duì)稱軸嗎?根據(jù)是什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知二次函數(shù) =,當(dāng)<<時(shí), 隨的增大而增大,則實(shí)數(shù)a的取值范圍是 ( )
(A)> (B)<≤ (C)>0 (D)<<
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,Rt△ABC中,AC=3,BC=6,∠B=90°,將△ABC折疊,使A點(diǎn)與BC的中點(diǎn)D重合,折痕為MN,則線段BN的長為( )
A. B. C.4 D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在矩形ABCD中,AB=12cm,BC=8cm.點(diǎn)E、F、G分別從點(diǎn)A、B、C同時(shí)出發(fā),沿矩形的邊按逆時(shí)針方向移動(dòng),點(diǎn)E、G的速度均為2cm/s,點(diǎn)F的速度為4cm/s,當(dāng)點(diǎn)F追上點(diǎn)G(即點(diǎn)F與點(diǎn)G重合)時(shí),三個(gè)點(diǎn)隨之停止移動(dòng).設(shè)移動(dòng)開始后第ts時(shí),△EFG的面積為Scm2.
(1)當(dāng)=1s時(shí),S的值是多少?
(2) 當(dāng)時(shí),點(diǎn)E、F、G分別在邊AB、BC、CD上移動(dòng),用含t的代數(shù)式表示S;當(dāng)時(shí),點(diǎn)E在邊AB上移動(dòng),點(diǎn)F、G都在邊CD上移動(dòng),用含t的代數(shù)式表示S.
(3)若點(diǎn)F在矩形的邊BC上移動(dòng),當(dāng)為何值時(shí),以點(diǎn)B、E、F為頂點(diǎn)的三角形與以C、F、G為頂點(diǎn)的三角形相似?請說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
將一副直角三角板ABC和DEF如圖放置(其中∠A=60°,∠F=45°),使點(diǎn)E落在AC邊上,且ED∥BC,則∠CEF的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在△ABC中,AB=AC,∠BAC=(),將線段BC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到線段BD.
(1)如圖1,直接寫出∠ABD的大。ㄓ煤的式子表示);
(2)如圖2,∠BCE=150°,∠ABE=60°,判斷△ABE的形狀并加以證明;
(3)在(2)的條件下,連結(jié)DE,若∠DEC=45°,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com