如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn),邊OA在x軸上,OC在y軸上,如果矩形OA′B′C′與矩形OABC關(guān)于點(diǎn)O位似,且矩形OA′B′C′的面積等于矩形OABC面積的,那么點(diǎn)B′的坐標(biāo)是

A.(-2,3) B.(2,-3) C.(3,-2)或(-2,3) D.(-2,3)或(2,-3) 

C.

解析試題分析::∵矩形OA′B′C′與矩形OABC關(guān)于點(diǎn)O位似,且矩形OA′B′C′的面積等于矩形OABC面積的,
∴兩矩形的相似比為1:2,
∵B點(diǎn)的坐標(biāo)為(3,2),
∴點(diǎn)B′的坐標(biāo)是(,1)或(-,-1).
故選C.
考點(diǎn):1.位似變換;2.坐標(biāo)與圖形性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題5分)如圖,已知AD∥BC,∠1=∠2,說(shuō)明∠3+∠4=180°,請(qǐng)完成說(shuō)明過(guò)程,并在括號(hào)內(nèi)填上相應(yīng)依據(jù):

解:∠3+∠4=180°,理由如下:
∵AD∥BC(已知),
∴∠1=∠3(                       
∵∠1=∠2(已知)
∴∠2=∠3(等量代換);
                                 
∴∠3+∠4=180°(                     

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

如圖,在等邊△ABC中,BC=6,點(diǎn)D,E分別在AB,AC上,DE∥BC,將△ADE沿DE翻折后,點(diǎn)A落在點(diǎn)A′處.連結(jié)A A′并延長(zhǎng),交DE于點(diǎn)M,交BC于點(diǎn)N.如果點(diǎn)A′為MN的中點(diǎn),那么△ADE的面積為(  )

A.B.3C.6D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

如圖,在?ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點(diǎn)E,交DC的延長(zhǎng)線于點(diǎn)F,BG⊥AE,垂足為G,若BG=,則△CEF的面積是( 。

A. B. C. D. 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

如圖是小明設(shè)計(jì)用手電來(lái)測(cè)量某古城墻高度的示意圖,點(diǎn)P處放一水平的平面鏡,光線從點(diǎn)A出發(fā)經(jīng)平面鏡反射后剛好射到古城墻CD的頂端C處,已知AB⊥BD,CD⊥BD,且測(cè)得AB=1.2米,BP=1.8米,PD=12米, 那么該古城墻的高度是(   )

A.6米 B.8米 C.18米 D.24米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

如圖,在梯形ABCD中,AD∥BC,AD=2,AB=3,BC=6,沿AE翻折梯形ABCD使點(diǎn)B落AD的延長(zhǎng)線上,記為點(diǎn)B’,連結(jié)B’E交CD于點(diǎn)F,則的值為(   )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

,則(     )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

如圖是我市幾個(gè)旅游景點(diǎn)的大致位置示意圖,如果用(0,0)表示新寧莨山的位置,用(1,5)表示隆回花瑤的位置,那么城市南山的位置可以表示為【   】

A.(2,1) B.(0,1) C.(﹣2,﹣1) D.(﹣2,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

如圖,點(diǎn)A,B,C,D的坐標(biāo)分別是(1,7),(1,1),(4,1),(6,1),以C,D,E為頂點(diǎn)的三角形與△ABC相似,則點(diǎn)E的坐標(biāo)不可能是( 。

A.(6,0) B.(6,3)
C.(6,5) D.(4,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案