【題目】為增強居民節(jié)約用水意識,某市在2018年開始對供水范圍內(nèi)的居民用水實行“階梯收費”,具體收費標準如下表:
某戶居民四月份用水10 m3時,繳納水費23元.
(1) 求a的值;
(2) 若該戶居民五月份所繳水費為71元,求該戶居民五月份的用水量.
【答案】(1)a的值為2.3;(2)該用戶居民五月份的用水量為28 m3.
【解析】
(1)四月份用水10 m3<22 m3,故單價為a元/m.根據(jù)“繳納水費為23元”,列出關(guān)于a的方程,即可求出a的值;
(2)當用水量為22 m3時,水費為22×2.3=50.6<71,故五月份用水量超過22 m3;
設(shè)五月份用水量為xm3,前22m3的部分,水費為22×2.3,超過22m3的水為(x-22)m3,根據(jù)“五月份所繳水費為71元”列出關(guān)于x的方程,求出x的值即為五月份用水量.
(1) 由題意,10a=23,解得a=,即a的值為
(2) 設(shè)用戶用水量為x m3,因為用水22 m3時,水費為22×2.3=50.6(元)<71元,
所以x>22,
所以
解得x=28.
答:該用戶居民五月份的用水量為28 m3
科目:初中數(shù)學(xué) 來源: 題型:
【題目】分類討論是一種非常重要的數(shù)學(xué)方法,如果一道題提供的已知條件中包含幾種情況,我們可以分情況討論來求解.例如:若|x|=2,|y|=3求x+y的值.
情況①若x=2,y=3時,x+y=5
情況②若x=2,y=﹣3時,x+y=﹣1
情況③若x=﹣2,y=3時,x+y=1
情況④若x=﹣2,y=﹣3時,x+y=﹣5
所以,x+y的值為1,﹣1,5,﹣5.
幾何的學(xué)習(xí)過程中也有類似的情況:
問題(1):已知點A,B,C在一條直線上,若AB=8,BC=3,則AC長為多少?
通過分析我們發(fā)現(xiàn),滿足題意的情況有兩種
情況①當點C在點B的右側(cè)時,如圖1,此時,AC=
情況②當點C在點B的左側(cè)時,如圖2,此時,AC=
通過以上問題,我們發(fā)現(xiàn),借助畫圖可以幫助我們更好的進行分類.
問題(2):如圖3,數(shù)軸上點A和點B表示的數(shù)分別是﹣1和2,點C是數(shù)軸上一點,且BC=2AB,則點C表示的數(shù)是多少?
仿照問題1,畫出圖形,結(jié)合圖形寫出分類方法和結(jié)果.
問題(3):點O是直線AB上一點,以O(shè)為端點作射線OC、OD,使∠AOC=60°,OCOD,求∠BOD的度數(shù).畫出圖形,直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合題
(1)為了吸引顧客,某商家把每件100元進的一批服裝,標價定為每件498元,然后以標價的5折出售,則售價為_______元,利潤為_______元,利潤率為_______(填百分數(shù));
(2)請結(jié)合下面方程的數(shù)據(jù)在空白處填上一個合適的條件,使問題成為一個完整的打折銷售的實際問題并求解.
某商家將一件成本為200元的衣服_______標價,再按標價的x折出售,仍可獲利40元,求x.
200×(1+50%)-200=40.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝廠生產(chǎn)一種西裝和領(lǐng)帶,西裝每套定價1000元,領(lǐng)帶每條定價200元.廠方在開展促銷活動期間,向客戶提供兩種優(yōu)惠方案:①買一套西裝送一條領(lǐng)帶;②西裝和領(lǐng)帶都按定價的90%付款.現(xiàn)某客戶要到該服裝廠購買西裝20套,領(lǐng)帶x條(x>20).
(1)若該客戶按方案①購買,需付款多少元;(用含x的代數(shù)式表示)若該客戶按方案②購買,需付款多少元.(用含x的代數(shù)式表示)
(2)若x=30,通過計算說明此時按哪種方案購買較為合算?
(3)當x=30,你能給出一種更為省錢的購買方案嗎?若有,請寫出你的購買方案和總費用;若無,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,C是⊙O上的點,且OE⊥AC于點E,過點C作⊙O的切線,交OE的延長線于點D,交AB的延長線于點F,連接AD
(1)求證:AD是⊙O的切線;
(2)若tan∠F= ,⊙O半徑為1,求線段AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,∠A=30°.
(1)用尺規(guī)作圖作AB邊上的中垂線DE,交AC于點D,交AB于點E.(保留作圖痕跡,不要求寫作法和證明);
(2)連接BD,求證:BD平分∠CBA.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩塊大小一樣斜邊為4且含有30°角的三角板如圖水平放置.將△CDE繞C點按逆時針方向旋轉(zhuǎn),當E點恰好落在AB上時,△CDE旋轉(zhuǎn)了度,線段CE旋轉(zhuǎn)過程中掃過的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x+3與x軸相交于點A,與y軸相交于點B.
(1)求A,B兩點的坐標;
(2)過B點作直線與x軸交于點P,若△ABP的面積為,試求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=30°,∠C=90°,E是斜邊AB的中點,點P為AC邊上一動點,若Rt△ABC的直角邊AC=4,則PB+PE的最小值等于_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com