如圖①,要設(shè)計(jì)一幅寬20cm,長60cm的長方形圖案,其中有兩橫兩豎的彩條,橫、豎彩條的寬度比為4:3,如果要使所有彩條所占面積為原長方形圖案面積的三分之一,應(yīng)如何設(shè)計(jì)每個(gè)彩條的寬度?
分析:由橫、豎彩條的寬度比為4:3,可設(shè)每個(gè)橫彩條的寬為4x,則每個(gè)豎彩條的寬為3x.為更好地尋找題目中的等量關(guān)系,將橫、豎彩條分別集中,原問題轉(zhuǎn)化為如圖②的情況,得到長方形ABCD.
(1)結(jié)合以上分析完成填空:如圖②,用含x的代數(shù)式表示:AB=
 
cm;AD精英家教網(wǎng)=
 
cm;長方形ABCD的面積為
 
cm2;
(2)列出方程并完成本題解答.
分析:(1)一條豎紋寬度為3x,長方形寬減去兩條豎紋寬度,即為AB長度,同理,長方形長減去兩條橫紋寬度,即為AD長度;長方形面積為20×60×(1-
1
3
)=800;
(2)在(1)的基礎(chǔ)上,根據(jù)所有彩條所占面積為原長方形圖案面積的三分之一列方程求解即可.
解答:解:(1)由題意得,AB=(20-6x)cm,AD=(60-8x)cm,長方形面積為60×20×(1-
1
3
)=800cm2

(2)由題意列方程得(20-6x)(60-8x)=
2
3
×1200,
解得,x=
5
6
,x=10(舍去).
答:每個(gè)橫彩紋的寬度為
10
3
cm,每個(gè)豎彩紋寬度為
5
2
cm.
點(diǎn)評:本題涉及一元二次方程的應(yīng)用,正確理解圖形之間的關(guān)系是解題關(guān)鍵,本題難度中等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,要設(shè)計(jì)一幅寬20cm、長30cm的圖案,其中有兩橫兩豎的彩條,橫、豎彩條的寬度比為3:2,如果要使彩條所占面積是圖案面積的四分之一,應(yīng)如何設(shè)計(jì)彩條的寬度(結(jié)果保留小數(shù)點(diǎn)后一位)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,要設(shè)計(jì)一幅寬20cm,長30cm的矩形圖案,其中有兩橫兩豎的彩條,橫、豎彩條的寬度比為2:3,如果要使所有彩條所占面積為原矩形圖案面積的三分之一,應(yīng)如何設(shè)計(jì)每個(gè)彩條的寬度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①:要設(shè)計(jì)一幅寬20cm,長30cm的矩形圖案,其中有兩橫兩豎的彩條,橫、豎彩條的寬度比為2:3,如果要使所有彩條所占面積為原矩形圖案面積的三分之一,應(yīng)如何設(shè)計(jì)每個(gè)彩條的寬度?
分析:由橫、豎彩條的寬度比為2:3,可設(shè)每個(gè)橫彩條的寬為2x,則每個(gè)豎彩條的寬為3x.為更好地尋找題目中的等量關(guān)系,將橫、豎彩條分別集中,原問題轉(zhuǎn)化為如圖②的情況,得到矩形ABCD.
結(jié)合以上分析完成填空:
如圖②:用含x的代數(shù)式表示:AB=
 
cm;AD=
 
cm;矩形ABCD的面積為
 
cm2;列出方程并完成本題解答.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•橋西區(qū)模擬)注意:為了使同學(xué)們更好地解答本題,下面提供了一種解題思路,你可以依照這個(gè)思路填空,并完成本題解答的全過程.如果你選用其他的解題方案,此時(shí),不必填空,只需按照解答題的一般要求,進(jìn)行解答即可.
如圖①,要設(shè)計(jì)一幅寬20cm,長30cm的矩形圖案,其中有兩橫兩豎的彩條,橫、豎彩條的寬度比為2:3,如果要使所有彩條所占面積為原矩形圖案面積的三分之一,應(yīng)如何設(shè)計(jì)每個(gè)彩條的寬度?
分析:由橫、豎彩條的寬度比為2:3,可設(shè)每個(gè)橫彩條的寬為2x,則每個(gè)豎彩條的寬為3x.為更好地尋找題目中的等量關(guān)系,將橫、豎彩條分別集中,原問題轉(zhuǎn)化為如圖②的情況,得到矩形ABCD.
結(jié)合以上分析完成填空:如圖②,用含x的代數(shù)式表示:
AB=
(20-6x)
(20-6x)
cm;
AD=
(30-4x)
(30-4x)
cm;
矩形ABCD的面積為
(24x2-260x+600)
(24x2-260x+600)
 cm2
列出方程并完成本題解答.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,要設(shè)計(jì)一幅寬20cm,長30cm的矩形圖案,其中有兩橫兩豎的彩條,橫、豎彩條的寬度比為2:3,如果要使所有彩條所占面積為原矩形圖案面積的三分之一,則橫彩條和豎彩條的寬度分別是( 。

查看答案和解析>>

同步練習(xí)冊答案