【題目】如圖,直線(xiàn)y13x+4x軸、y軸于點(diǎn)A、C,直線(xiàn)y2=﹣x+4x軸、y軸于點(diǎn)BC,點(diǎn)Pm2)是△ABC內(nèi)部(包括邊上)的一點(diǎn),則m的最大值與最小值之差為( 。

A.B.6C.D.

【答案】D

【解析】

由于P的縱坐標(biāo)為2,故點(diǎn)P在直線(xiàn)y2上,要求符合題意的m值,則P點(diǎn)為直線(xiàn)y2與題目中兩直線(xiàn)的交點(diǎn),此時(shí)m存在最大值與最小值,故可求得.

解∵點(diǎn)Pm2)是△ABC內(nèi)部(包括邊上)的一點(diǎn),

故點(diǎn)P在直線(xiàn)y2上,如圖所示,

觀察圖象得:當(dāng)P為直線(xiàn)y2與直線(xiàn)y2的交點(diǎn)時(shí),m取最大值;

當(dāng)P為直線(xiàn)y2與直線(xiàn)y1的交點(diǎn)時(shí),m取最小值;

y2=﹣x+4中令y2,則x6

y13x+4中令y2,則x=﹣,

m的最大值為6,m的最小值為﹣

m的最大值與最小值之差為:6﹣(﹣)=

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,現(xiàn)有一張邊長(zhǎng)為4的正方形紙片,點(diǎn)P為正方形AD邊上的一點(diǎn)(不與點(diǎn)A、點(diǎn)D重合)將正方形紙片折疊,使點(diǎn)B落在P處,點(diǎn)C落在G處,PGDCH,折痕為EF,連接BP、BH

1)求證:∠APB=∠BPH;

2)當(dāng)點(diǎn)P在邊AD上移動(dòng)時(shí),△PDH的周長(zhǎng)是否發(fā)生變化?并證明你的結(jié)論;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】結(jié)合數(shù)軸與絕對(duì)值的知識(shí)回答下列問(wèn)題:

(1)數(shù)軸上表示41的兩點(diǎn)之間的距離是 ;表示-32兩點(diǎn)之間的距離是 ;一般地,數(shù)軸上表示數(shù)m和數(shù)n的兩點(diǎn)之間的距離等于.如果表示數(shù)和-2的兩點(diǎn)之間的距離是3,那么= ;

(2)若數(shù)軸上表示數(shù)的點(diǎn)位于-42之間,+的值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)yax2bxca≠0)的部分圖像,其中點(diǎn)A-1,0)是x軸上的一個(gè)交點(diǎn),點(diǎn)Cy軸上的交點(diǎn).

1)若過(guò)點(diǎn)A的直線(xiàn)l與這個(gè)二次函數(shù)的圖像的另一個(gè)交點(diǎn)為D,與該圖像的對(duì)稱(chēng)軸交于點(diǎn)E,與y軸交于點(diǎn)F,且DEEFFA

①求的值;

②設(shè)這個(gè)二次函數(shù)圖像的頂點(diǎn)為P,問(wèn):以DF為直徑的圓能否經(jīng)過(guò)點(diǎn)P?若能,請(qǐng)求出此時(shí)二次函數(shù)的關(guān)系式;若不能,請(qǐng)說(shuō)明理由.

2)若點(diǎn)C坐標(biāo)為(0-1),設(shè)Sabc ,求S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形 中,的平分線(xiàn)于點(diǎn) 的平分線(xiàn) 于點(diǎn) ,則 的長(zhǎng)為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形ABCD的邊BCx軸的正半軸上,點(diǎn)B在點(diǎn)C的左側(cè),直線(xiàn)y=kx經(jīng)過(guò)點(diǎn)A2,2)和點(diǎn)P,且OP=4,將直線(xiàn)y=kx沿y軸向下平移得到直線(xiàn)y=kx+b,若點(diǎn)P落在矩形ABCD的內(nèi)部,則b的取值范圍是(

A. 0b2 B. 2b0 C. 4b2 D. 4b<-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把幾個(gè)圖形拼成一個(gè)新的圖形,再通過(guò)兩種不同的方法計(jì)算同一個(gè)圖形的面積,可以得到一個(gè)等式,也可以求出一些不規(guī)則圖形的面積.

例如,由圖1,可得等式:(a+2b)(a+b=a2+3ab+2b2

(1)如圖2,將幾個(gè)面積不等的小正方形與小長(zhǎng)方形拼成一個(gè)邊長(zhǎng)為a+b+c的正方形,試用不同的形式表示這個(gè)大正方形的面積,你能發(fā)現(xiàn)什么結(jié)論?請(qǐng)用等式表示出來(lái).

(2)利用(1)中所得到的結(jié)論,解決下面的問(wèn)題: 已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值.

(3)如圖3,將兩個(gè)邊長(zhǎng)分別為ab的正方形拼在一起,B,CG三點(diǎn)在同一直線(xiàn)上,連接BDBF.若這兩個(gè)正方形的邊長(zhǎng)滿(mǎn)足a+b=10,ab=20,請(qǐng)求出陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料,根據(jù)材料回答:

例如1

.

例如2

8×0.1258×8×8×8×8×8×0.125×0.125×0.125×0.125×0.125×0.125

(8×0.125)×(8×0.125)×(8×0.125)×(8×0.125)×(8×0.125)×(8×0.125)

(8×0.125)6 1.

1)仿照上面材料的計(jì)算方法計(jì)算:;

2)由上面的計(jì)算可總結(jié)出一個(gè)規(guī)律:(用字母表示) ;

3)用(2)的規(guī)律計(jì)算:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,弦ADBC垂足為H,ABC=2CAD.

(1)如圖1,求證:AB=BC;

(2)如圖2,過(guò)點(diǎn)BBMCD垂足為M,BM交⊙OE,連接AE、HM,求證:AEHM;

(3)如圖3,在(2)的條件下,連接BDAEN,AEBC交于點(diǎn)F,若NH=2,AD=11,求線(xiàn)段AB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案