因式分解:
(1)3x2-27
(2)x3-6x2+9x
(3)(x2+4)2-16x2
分析:(1)首先提取公因式3,再用平方差公式進行二次分解即可;
(2)首先提取公因式x,再用完全平方公式進行二次分解即可;
(3)首先用平方差公式進行分解,再用完全平方公式進行二次分解即可.
解答:解:(1)原式=3(x2-9)=3(x+3)(x-3);

(2)原式=x(x2-6x+9)=x(x-3)2;

(3)原式=(x2+4-4x)( x2+4+4x)=(x-2)2(x+2)2
點評:本題考查了用提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

1、因式分解:3x3-6x2y+3xy2=
3x(x-y)2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、因式分解:
(1)3x-12x3
(2)2a(x2+1)2-2ax2;
(3)x2+y2-1-2xy;
(4)(a-b)(3a+b)2+(a+3b)2(b-a).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

因式分解:3x3-3x2y-6xy2=
3x(x-2y)(x+y)
3x(x-2y)(x+y)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

因式分解:
(1)3x-12x3
(2)6xy2+9x2y+y3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

因式分解:(1)3x-12x3 (2)x2-5xy-6y2

查看答案和解析>>

同步練習冊答案