已知:拋物線y=x2+mx+n與x軸交A、B兩點(A點在B點左側(cè)),B(3,0),
且經(jīng)過C(2,-3),與y軸交于點D,
(1)求此拋物線的解析式及頂點F的坐標(biāo);
(2)P是線段AC上的一個動點,過P點作y軸的平行線交拋物于E點,求線段PE長度的最大值;
(3)在(1)的條件下,在x軸上是否存在兩個點G、H(G在H的左側(cè)),且GH=2,使得線段GF+FC+CH+HG的長度和為最;如果存在,求出G、H的坐標(biāo);如果不存在,說明理由.
解:(1)拋物線過點B(3,0);C(2,-3)
∴m=-2,n=-3 ∴y=x2-2x-3 ∴y=(x-1)2-4…………………………2分 ∴頂點F坐標(biāo)(1,-4)………………3分 (2)設(shè)AC的解析式為:y=kx+b A(-1,0) C(2,-3)
解得:k=-1,b=-1 ∴AC的解析式為:y=-x-1………………4分 設(shè)點P的橫坐標(biāo)為a,則P(a,-a-1),E的橫坐標(biāo)為a, ∵E在拋物線上,故E(a,a2-2a-3) ∴PE=-a-1-(a2-2a-3)=-a2+a+2=-(a-)2+ ∵-1<a<2 ∴當(dāng)a=時,PE的最大值為………………5分 (3)只需求GC+HF最短. 拋物線y=x2-2x-3的對稱軸為. 將點F向右平移2個單位長度至F1,F(xiàn)1(3,-4), 作F1關(guān)于x軸的對稱點F2(3,4), 聯(lián)結(jié)F2F,與x軸交于點H,H為所求.…………………6分 可求得F2F,的解析式為:…………………7分 當(dāng)y=0時,x=……………………………8分 ∴點H的坐標(biāo)為(,0),點G的坐標(biāo)為(,0).………………9分 |
科目:初中數(shù)學(xué) 來源:中考備考專家數(shù)學(xué)(第二版) 題型:044
已知:拋物線y=x2-mx+與拋物線y=x2+mx-m2在平面直角坐標(biāo)系xOy中的位置如圖所示,其中一條與x軸交于A、B兩點.
(1)試判斷哪條拋物線經(jīng)過A、B兩點,并說明理由;
(2)若A、B兩點到原點的距離AO、BO滿足-=,求經(jīng)過A、B兩點的這條拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:中考備考專家數(shù)學(xué)(第二版) 題型:044
已知:拋物線y=x2-(2m+4)x+m2-10與x軸交于A、B兩點,C是拋物線的頂點.
(1)用配方法求頂點C的坐標(biāo)(用含m的代數(shù)式表示);
(2)“若AB的長為2,求拋物線的解析式.”解法的部分步驟如下,補全解題過程,并簡述步驟①的解題依據(jù),步驟②的解題方法.
解:由(1)知,對稱軸與x軸交于點D( ,0).
∵拋物線的對稱性及AB=2,
∴AD=BD=|xA-xD|=.
∵點A(xA,0)在拋物線y=(x-h(huán))2+k上,
∴0=(xA-h(huán))2+k. 、
∵h=xC=xD,將|xA-xD|=代入上式,得到關(guān)于m的方程
0=()2+( ) ②
(3)將(2)中的條件“AB的長為2”改為“△ABC為等邊三角形”,用類似的方法求出此拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:1+1輕巧奪冠優(yōu)化訓(xùn)練九年級數(shù)學(xué)上 北京課改版 題型:044
已知:拋物線y=x2-(3m-1)x+m2-m.
(1)求證:此拋物線與x軸必有兩個交點;
(2)若此拋物線與直線y=x-3m+3的一個交點在y軸上,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:非常講解·教材全解全析 數(shù)學(xué) 九年級下 (配北師大課標(biāo)) 配北師大課標(biāo) 題型:047
已知:拋物線y=x2+bx+c與x軸交于P,Q兩點,與y軸交于點E,且OE=OP=PQ.(1)畫出拋物線的示意圖,并求出拋物線的解析式;(2)問線段EQ上是否存在一點M,使△EMP∽△EPQ?若存在,求出點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com