【題目】如圖1,,點(diǎn)是直線、之間的一點(diǎn),連接、.
(1)問題發(fā)現(xiàn):
①若,,則___________.
②猜想圖1中、、的數(shù)量關(guān)系,并證明你的結(jié)論.
(2)拓展應(yīng)用:
如圖2,,線段把這個(gè)封閉區(qū)域分為Ⅰ、Ⅱ兩部分(不含邊界),點(diǎn)是位于這兩個(gè)區(qū)域內(nèi)的任意一點(diǎn),請直接寫出、、的數(shù)量關(guān)系.
【答案】(1)①60°;②見解析;(2)見解析.
【解析】
(1)①過點(diǎn)E作EF∥AB,再由平行線的性質(zhì)即可得出結(jié)論;②根據(jù)①的過程可得出結(jié)論;
(2)根據(jù)題意畫出圖形,再根據(jù)平行線的性質(zhì)即可得出∠EMB、∠END、∠MEN的關(guān)系.
(1)①如圖1,過E作EF∥AB,
∵AB∥CD,
∴AB∥EF∥CD,
∴∠A=∠1=15°,∠C=∠2=45°,
∴=∠A+∠C=60°,
故答案為:60;
②猜想:.
理由:如圖1,過點(diǎn)作,
∵
∴(平行于同一條直線的兩直線平行),
∴,(兩直線平行,內(nèi)錯(cuò)角相等),
∴(等量代換).
(2)當(dāng)點(diǎn)E位于區(qū)域Ⅰ時(shí),∠EMB+∠END+∠MEN=360°,
理由:過E作EF∥AB,
∵AB∥CD,
∴AB∥CD∥EF,
∴∠BME+∠MEF=180°,∠DNE+∠NEF=180°,
∴∠EMB+∠END+∠MEN=360°;
當(dāng)點(diǎn)E位于區(qū)域Ⅱ時(shí),∠EMB+∠END=∠MEN,
理由:過E作EF∥AB,
∵AB∥CD,
∴AB∥CD∥EF,
∴∠BMN=∠FEM,∠DNE=∠FEN,
∴∠EMB+∠END=∠MEF+∠NEF=∠MEN.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè) A 是由 2×4 個(gè)整數(shù)組成的 2 行 4 列的數(shù)表,如果某一行(或某一列)各數(shù)之和為負(fù)數(shù),則改變該行(或該列)中所有數(shù)的符號(hào),稱為一次“操作”.?dāng)?shù)表A 如下表所示,如果經(jīng)過兩次“操作”,使得到的數(shù)表每行的各數(shù)之和與每列的各數(shù)之和均為非負(fù)整數(shù),請寫出每次“操作”后所得的數(shù)表.(寫出一種方法即可)
1 | 2 | 3 | -7 |
-2 | -1 | 0 | 1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,DE、DF是△ABC的中位線,連接EF、AD,其交點(diǎn)為O.求證:
(1)△CDE≌△DBF;
(2)OA=OD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解全校學(xué)生上學(xué)的交通方式,我校九年級(21)班的5名同學(xué)聯(lián)合設(shè)計(jì)了一份調(diào)查問卷,對該校部分學(xué)生進(jìn)行了隨機(jī)調(diào)查.按A(騎自行車)、B(乘公交車)、C(步行)、D(乘私家車)、E(其他方式)設(shè)置選項(xiàng),要求被調(diào)查同學(xué)從中單選.并將調(diào)查結(jié)果繪制成條形統(tǒng)計(jì)圖1和扇形統(tǒng)計(jì)圖2,根據(jù)以上信息,解答下列問題:
(1)本次接受調(diào)查的總?cè)藬?shù)是 人,其中“步行”的人數(shù)是 人;
(2)在扇形統(tǒng)計(jì)圖中,“乘公交車”的人數(shù)所占的百分比是 ,“其他方式”所在扇形的圓心角度數(shù)是 ;
(3)已知這5名同學(xué)中有2名女同學(xué),要從中選兩名同學(xué)匯報(bào)調(diào)查結(jié)果.請你用列表法或畫樹狀圖的方法,求出恰好選出1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中.
(1)請直接寫出點(diǎn)、兩點(diǎn)的坐標(biāo)::___________;:___________;
(2)若把向上平移3個(gè)單位,再向右平移2個(gè)單位得,請?jiān)谏蠄D中畫出,并寫出點(diǎn)的坐標(biāo)___________;
(3)求的面積是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每逢金秋送爽之時(shí),正是大閘蟹上市的旺季,也是吃蟹的最好時(shí)機(jī),可謂膏肥黃美.
某經(jīng)銷商購進(jìn)一批雌蟹、雄蟹共1000只,進(jìn)價(jià)均為每只40元,然后以雌蟹每只75元、雄蟹每只60元的價(jià)格售完,共獲利29000元.
(1)求該經(jīng)銷商分別購進(jìn)雌蟹、雄蟹各多少只?
(2)民間有“九雌十雄”的說法,即九月吃雌蟹,十月吃雄蟹.十月份,在進(jìn)價(jià)不變的情況下該經(jīng)銷商決定調(diào)整價(jià)格,將雌蟹的價(jià)格在九月份的基礎(chǔ)上下調(diào)(降價(jià)后售價(jià)不低于進(jìn)價(jià)),雄蟹的價(jià)格上漲,同時(shí)雌蟹的銷量較九月下降了,雄蟹的銷量上升了,結(jié)果十月份的銷售額比九月份增加了1000元,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,∠ABC的平分線交AC于點(diǎn)D,在AB的延長線上截取BE,使BE=CD,連接DE交BC于點(diǎn)F.
(1)如圖1,當(dāng)∠CAB=60°時(shí),若AB=2,求DE的長度;
(2)如圖2,當(dāng)∠CAB≠60°時(shí),求證:BE=2BF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D、E、F分別是邊AB、BC、CA的中點(diǎn),AH是邊BC上的高.
(1)求證:四邊形ADEF是平行四邊形;
(2)若∠AHF=20°,∠AHD=50°,求∠DEF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)生小明、小華為了解本校八年級學(xué)生每周上網(wǎng)的時(shí)間,各自進(jìn)行了抽樣調(diào)查.小明調(diào)查了八年級信息技術(shù)興趣小組中40名學(xué)生每周上網(wǎng)的時(shí)間,算得這些學(xué)生平均每周上網(wǎng)時(shí)間為2.5h;小華從全體320名八年級學(xué)生名單中隨機(jī)抽取了40名學(xué)生,調(diào)查了他們每周上網(wǎng)的時(shí)間,算得這些學(xué)生平均每周上網(wǎng)時(shí)間為1.2h.小明與小華整理各自樣本數(shù)據(jù),如表所示.
時(shí)間段(h/周) | 小明抽樣人數(shù) | 小華抽樣人數(shù) |
0~1 | 6 | 22 |
1~2 | 10 | 10 |
2~3 | 16 | 6 |
3~4 | 8 | 2 |
(每組可含最低值,不含最高值)
請根據(jù)上述信息,回答下列問題:
(1)你認(rèn)為哪位學(xué)生抽取的樣本具有代表性?_____.
估計(jì)該校全體八年級學(xué)生平均每周上網(wǎng)時(shí)間為_____h;
(2)在具有代表性的樣本中,中位數(shù)所在的時(shí)間段是_____h/周;
(3)專家建議每周上網(wǎng)2h以上(含2h)的同學(xué)應(yīng)適當(dāng)減少上網(wǎng)的時(shí)間,根據(jù)具有代表性的樣本估計(jì),該校全體八年級學(xué)生中有多少名學(xué)生應(yīng)適當(dāng)減少上網(wǎng)的時(shí)間?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com