【題目】為了解我市九年級學生升學考試體育成績,現(xiàn)從中隨機抽取部分學生的體育成績進行分段(:40分;:39-35分;:34-30分;:29-20分;:19-0分) 統(tǒng)計如右表。根據(jù)上面提供的信息,回答下列問題:
(1)在統(tǒng)計表中,的值為 ,的值為 ;
(2)甲同學說:“我的體育成績是此次抽樣調查所得數(shù)據(jù)的中位數(shù)”.請問:甲同學的體育成績應在 分數(shù)段內(填相應分數(shù)段的字母).
(3)若把成績在分以上(含分)定為優(yōu)秀,則我市今年8000名九年級學生中體育成績?yōu)閮?yōu)秀的學生人數(shù)約有 .名.
【答案】(1)a=32, b=10; (2)B; (3)6400
【解析】
(1)根據(jù)頻數(shù)÷頻數(shù)=總數(shù),頻數(shù)和等于總數(shù),頻率和等于1.求出問題的答案;(2)根據(jù)b=10,中位數(shù)在B,得出答案.(3)8000乘以35分以上的頻數(shù)和即可得出答案.
(1)抽取的總人數(shù)是:48÷0.48=100人,則a=100×0.32=32,d=1-0.48-0.10-0.05=0.05,則b=100×0.10=10.
(2)b=10,中位數(shù)在B,甲同學體育成績在B分數(shù)段;(3)8000×(0.48+0.32)=6400.則體育成績?yōu)閮?yōu)秀的學生人數(shù)約是6400名.
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學課上,老師提出如下問題:
已知:如圖,四邊形ABCD是平行四邊形;
求作:菱形AECF,使點E,F分別在BC,AD上.
小凱的作法如下:
(1)連接AC;
(2)作AC的垂直平分線EF分別交BC,AD于E,F.
(3)連接AE,CF
所以四邊形AECF是菱形.
老師說:“小凱的作法正確”.
回答下列問題:
根據(jù)小凱的做法,小明將題目改編為一道證明題,請你幫助小明完成下列步驟:
(1)已知:在平行四邊形ABCD中,點E、F分別在邊BC、AD上, .(補全已知條件)
求證:四邊形AECF是菱形.
(2)證明:(寫出證明過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=x2+bx﹣3的圖象與x軸分別相交于A、B兩點,點B的坐標為(3,0),與y軸的交點為C,動點T在射線AB上運動,在拋物線的對稱軸l上有一定點D,其縱坐標為2,l與x軸的交點為E,經(jīng)過A、T、D三點作⊙M.
(1)求二次函數(shù)的表達式;
(2)在點T的運動過程中,
①∠DMT的度數(shù)是否為定值?若是,請求出該定值:若不是,請說明理由;
②若MT=AD,求點M的坐標;
(3)當動點T在射線EB上運動時,過點M作MH⊥x軸于點H,設HT=a,當OH≤x≤OT時,求y的最大值與最小值(用含a的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖線段OA=12,線段OA繞點O旋轉90°,形成扇形OAB,點D為OB的中點,點E為弧AB上的動點,連接OE,與CD的交點為F,點C在OA上,AC=4.
(1)①CD= ;②當BE弧長為4π時,∠BOE= .
(2)當四邊形ODEC面積最大時,求EF.
(3)在點E的運動過程中,是否存在一個時刻使CE+2DE有最小值?若存在請直接寫出答案;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市為創(chuàng)建全國文明城市,開展“美化綠化城市”活動,計劃經(jīng)過若干年使城區(qū)綠化總面積新增360萬平方米.自2013年初開始實施后,實際每年綠化面積是原計劃的1.6倍,這樣可提前4年完成任務.
(1)問實際每年綠化面積多少萬平方米?
(2)為加大創(chuàng)城力度,市政府決定從2016年起加快綠化速度,要求不超過2年完成,那么實際平均每年綠化面積至少還要增加多少萬平方米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】經(jīng)過點A(4,1)的直線與反比例函數(shù)y=的圖象交于點A、C,AB⊥y軸,垂足為B,連接BC.
(1)求反比例函數(shù)的表達式;
(2)若△ABC的面積為6,求直線AC的函數(shù)表達式;
(3)在(2)的條件下,點P在雙曲線位于第一象限的圖象上,若∠PAC=90°,則點P的坐標是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年5月,某大型商業(yè)集團隨機抽取所屬的m家商業(yè)連鎖店進行評估,將各連鎖店按照評估成績分成了A、B、C、D四個等級,繪制了如圖尚不完整的統(tǒng)計圖表.
評估成績n(分) | 評定等級 | 頻數(shù) |
90≤n≤100 | A | 2 |
80≤n<90 | B | |
70≤n<80 | C | 15 |
n<70 | D | 6 |
根據(jù)以上信息解答下列問題:
(1)求m的值;
(2)在扇形統(tǒng)計圖中,求B等級所在扇形的圓心角的大;(結果用度、分、秒表示)
(3)從評估成績不少于80分的連鎖店中任選2家介紹營銷經(jīng)驗,求其中至少有一家是A等級的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市某中學學生會在開展“厲行勤儉節(jié)約,反對鋪張浪費”的主題教育活動中,在全校范圍內隨機抽取了若干名學生就某日晚飯浪費飯菜情況進行調查,調查內容分為四種:A.飯和菜全部吃完;B.有剩飯但菜吃完;C.飯吃完但菜有剩;D.飯和菜都有剩.學生會根據(jù)統(tǒng)計結果,繪制了如下統(tǒng)計表:根據(jù)所給信息,回答下列問題:
選項 | 頻數(shù) | 頻率 |
A | 36 | m |
B | n | 0.2 |
C | 6 | 0.1 |
D | 6 | 0.1 |
(1)統(tǒng)計表中:m=______;n=______.
(2)該中學有1800名學生晚飯在校就餐,根據(jù)調查結果,估計當天晚飯有多少人能夠把飯和菜全部吃完?
(3)為了對同學們浪費的行為進行糾正,校學生會從飯和菜都有剩的甲、乙、丙、丁四名同學中任取2位同學進行批評教育,請用列表法或樹狀圖法求恰好抽到甲和丁的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,山坡上有一棵樹AB,樹底部B點到山腳C點的距離BC為米,山坡的坡角為30°.小寧在山腳的平地F處測量這棵樹的高,點C到測角儀EF的水平距離CF=1米,從E處測得樹頂部A的仰角為45°,樹底部B的仰角為20°,求樹AB的高度.(參考數(shù)值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com