(2012•泰州)如圖,△ABC內(nèi)接于⊙O,OD⊥BC于D,∠A=50°,則∠OCD的度數(shù)是( 。
分析:首先連接OB,由在同圓或等圓中,同弧或等弧所對(duì)的圓周角等于這條弧所對(duì)的圓心角的一半,即可求得∠BOC的度數(shù),又由OB=OC,根據(jù)等邊對(duì)等角的性質(zhì),即可求得∠OCD的度數(shù).
解答:解:連接OB,
∵∠A=50°,
∴∠BOC=2∠A=100°,
∵OB=OC,
∴∠OCD=∠OBC=
180°-∠BOC
2
=40°.
故選A.
點(diǎn)評(píng):此題考查了圓周角定理與等腰三角形的性質(zhì).此題難度不大,注意掌握在同圓或等圓中,同弧或等弧所對(duì)的圓周角等于這條弧所對(duì)的圓心角的一半定理的應(yīng)用,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•泰州)如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,△ABC的頂點(diǎn)A、B、C在小正方形的頂點(diǎn)上,將△ABC向下平移4個(gè)單位、再向右平移3個(gè)單位得到△A1B1C1,然后將△A1B1C1繞點(diǎn)A1順時(shí)針旋轉(zhuǎn)90°得到△A1B2C2
(1)在網(wǎng)格中畫出△A1B1C1和△A1B2C2;
(2)計(jì)算線段AC在變換到A1C2的過(guò)程中掃過(guò)區(qū)域的面積(重疊部分不重復(fù)計(jì)算)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•泰州)如圖,數(shù)軸上的點(diǎn)P表示的數(shù)是-1,將點(diǎn)P向右移動(dòng)3個(gè)單位長(zhǎng)度得到點(diǎn)P′,則點(diǎn)P′表示的數(shù)是
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•泰州)如圖,△ABC中,∠C=90°,∠BAC的平分線交BC于點(diǎn)D,若CD=4,則點(diǎn)D到AB的距離是
4
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•泰州)如圖,在邊長(zhǎng)相同的小正方形組成的網(wǎng)格中,點(diǎn)A、B、C、D都在這些小正方形的頂點(diǎn)上,AB、CD相交于點(diǎn)P,則tan∠APD的值是
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•泰州)如圖,已知直線l與⊙O相離,OA⊥l于點(diǎn)A,OA=5.OA與⊙O相交于點(diǎn)P,AB與⊙O相切于點(diǎn)B,BP的延長(zhǎng)線交直線l于點(diǎn)C.
(1)試判斷線段AB與AC的數(shù)量關(guān)系,并說(shuō)明理由;
(2)若PC=2
5
,求⊙O的半徑和線段PB的長(zhǎng);
(3)若在⊙O上存在點(diǎn)Q,使△QAC是以AC為底邊的等腰三角形,求⊙O的半徑r的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案