如圖:四邊形ABCD中,E、F、G、H分別為各邊的中點,順次連接E、F、G、H,把四邊形EFGH稱為中點四邊形.連接AC、BD,容易證明:中點四邊形EFGH一定是平行四邊形.
(1)如果改變原四邊形ABCD的形狀,那么中點四邊形的形狀也隨之改變,通過探索可以發(fā)現(xiàn):當(dāng)四邊形ABCD的對角線滿足AC=BD時,四邊形EFGH為菱形.
當(dāng)四邊形ABCD的對角線滿足______時,四邊形EFGH為矩形;
當(dāng)四邊形ABCD的對角線滿足______時,四邊形EFGH為正方形;
(2)探索三角形AEH、三角形CFG與四邊形ABCD的面積之間的等量關(guān)系,請寫出你發(fā)現(xiàn)的結(jié)論,并加以證明;
(3)如果四邊形ABCD的面積為2,那么中點四邊形EFGH的面積是多少?

【答案】分析:(1)若四邊形EFGH為矩形,則應(yīng)有EF∥HG∥AC,EH∥FG∥BD,EF⊥EH,故應(yīng)有AC⊥BD;若四邊形EFGH為正方形,同上應(yīng)有AC⊥BD,又應(yīng)有EH=EF,而EF=AC,EH=BD,故應(yīng)有AC=BD.
(2)由相似三角形的面積比等于相似比的平方求解.(3)由(2)可得S?EFGH=S四邊形ABCD=1
解答:解:(1)若四邊形EFGH為矩形,則應(yīng)有EF∥HG∥AC,EH∥FG∥BD,EF⊥EH,故應(yīng)有AC⊥BD;
若四邊形EFGH為正方形,同上應(yīng)有AC⊥BD,又應(yīng)有EH=EF,而EF=AC,EH=BD,故應(yīng)有AC=BD.

(2)S△AEH+S△CFG=S四邊形ABCD.(6分)
證明:在△ABD中,
∵EH=BD,
∴△AEH∽△ABD.

即S△AEH=S△ABD
同理可證:S△CFG=S△CBD
∴S△AEH+S△CFG=(S△ABD+S△CBD)=S四邊形ABCD.(8分)

(3)由(2)可知S△AEH+S△CFG=(S△ABD+S△CBD)=S四邊形ABCD,
同理可得S△BEF+S△DHG=(S△ABC+S△CDA)=S四邊形ABCD,
故S?EFGH=S四邊形ABCD=1.(10分)
點評:本題考查了三角形的中位線的性質(zhì)及特殊四邊形的判定和性質(zhì),相似三角形的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設(shè)AC=2a,BD=2b,請推導(dǎo)這個四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案