若△ABC中,AB=13,AC=15,高AD=12,則BC的長(zhǎng)是

[  ]

A.14

B.14或4

C.8

D.4和8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分10分)如圖1,在△ABC中,ABBC=5,AC="6." △ECD是△ABC沿BC方向平移得到的,連接AE.ACBE相交于點(diǎn)O.

(1)判斷四邊形ABCE是怎樣的四邊形,說明理由;
(2)如圖2,P是線段BC上一動(dòng)點(diǎn)(圖2),(不與點(diǎn)B、C重合),連接PO并延長(zhǎng)交線段AE于點(diǎn)Q,QRBD,垂足為點(diǎn)R.
①四邊形PQED的面積是否隨點(diǎn)P的運(yùn)動(dòng)而發(fā)生變化?
若變化,請(qǐng)說明理由;若不變,求出四邊形PQED的面積;
②當(dāng)線段BP的長(zhǎng)為何值時(shí),△PQR與△BOC相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011~2012學(xué)年江蘇蘇州八年級(jí)下期期末復(fù)習(xí)(二)數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,在△ABC中,AB=5,BC=3,AC=4,動(dòng)點(diǎn)E(與點(diǎn)A、C不重合)在AC邊上,EF∥AB交BC于點(diǎn)F.

【小題1】當(dāng)△ECF的面積與四邊形EABF的面積相等時(shí),求CE的長(zhǎng)
【小題2】當(dāng)△ECF的周長(zhǎng)與四邊形EABF的周長(zhǎng)相等時(shí),求CE的長(zhǎng)
【小題3】試問在AB上是否存在點(diǎn)P,使得△EFP為等腰直角三角形?若不存在,請(qǐng)簡(jiǎn)要說明理由;若存在,請(qǐng)求出EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省南京市白下區(qū)中考二模數(shù)學(xué)試卷(解析版) 題型:解答題

(1)如圖①,P為△ABC的邊AB上一點(diǎn)(P不與點(diǎn)A、點(diǎn)B重合),連接PC,如果△CBP∽△ABC,那么就稱P為△ABC的邊AB上的相似點(diǎn).

畫法初探

①如圖②,在△ABC中,∠ACB>90°,畫出△ABC的邊AB上的相似點(diǎn)P(畫圖工具不限,保留畫圖痕跡或有必要的說明);

辯證思考

②是不是所有的三角形都存在它的邊上的相似點(diǎn)?如果是,請(qǐng)說明理由;如果不是,請(qǐng)找出一個(gè)不存在邊上相似點(diǎn)的三角形;

特例分析

③已知P為△ABC的邊AB上的相似點(diǎn),連接PC,若△ACP∽△ABC,則△ABC的形狀是   

④如圖③,在△ABC中,AB=AC,∠A=36°,P是邊AB上的相似點(diǎn),求的值.

(2)在矩形ABCD中,AB=a,BC=b(a≥b).P是AB上的點(diǎn)(P不與點(diǎn)A、點(diǎn)B重合),作PQ⊥CD,垂足為Q.如果矩形ADQP∽矩形ABCD,那么就稱PQ為矩形ABCD的邊AB、CD上的相似線.

①類比(1)中的“畫法初探”,可以提出問題:對(duì)于如圖④的矩形ABCD,在不限制畫圖工具的前提下,如何畫出它的邊AB、CD上的相似線PQ呢?

你的解答是:   (只需描述PQ的畫法,不需在圖上畫出PQ).

②請(qǐng)繼續(xù)類比(1)中的“辯證思考”、“特例分析”兩個(gè)欄目對(duì)矩形的相似線進(jìn)行研究,要求每個(gè)欄目提出一個(gè)問題并解決.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年南京市考數(shù)學(xué)一模試卷 題型:解答題

(8分)如圖,在△ABC中,AB=AC,∠B=30°,O是BC上一點(diǎn),以點(diǎn)O為

圓心,OB長(zhǎng)為半徑作圓,恰好經(jīng)過點(diǎn)A,并與BC交于點(diǎn)D.

(1)判斷直線CA與⊙O的位置關(guān)系,并說明理由;

(2)若AB=2,求圖中陰影部分的面積(結(jié)果保留π).

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案