【題目】為深化義務(wù)教育課程改革,滿足學(xué)生的個(gè)性化學(xué)習(xí)需求,某校就“學(xué)生對(duì)知識(shí)拓展,體育特長、藝術(shù)特長和實(shí)踐活動(dòng)四類選課意向”進(jìn)行了抽樣調(diào)查(每人選報(bào)一類),繪制了如圖所示的兩幅統(tǒng)計(jì)圖(不完整),請(qǐng)根據(jù)圖中信息,解答下列問題:

1扇形統(tǒng)計(jì)圖中m的值為   ,n的值為   ;

2補(bǔ)全條形統(tǒng)計(jì)圖;

3在選擇B類的學(xué)生中,甲、乙、丙三人在乒乓球項(xiàng)目表現(xiàn)突出,現(xiàn)決定從這三名同學(xué)中任選兩名參加市里組織的乒乓球比賽,選中甲同學(xué)的概率是   

【答案】(1)20,25;(2)補(bǔ)圖見解析;(3)

【解析】(1)根據(jù)C類人數(shù)有15人,占總?cè)藬?shù)的25%可得出總?cè)藬?shù),求出A類人數(shù),進(jìn)而可得出結(jié)論;(2)直接根據(jù)概率公式可得出結(jié)論;

解:(1)總?cè)藬?shù)=15÷25%=60(人).

A類人數(shù)=60﹣24﹣15﹣9=12(人).

∵12÷60=0.2=20%,

∴m=20,

n=25.

(2)15÷25%×20%=12

條形統(tǒng)計(jì)圖如圖所示,

(3)從這三名同學(xué)中任選兩名參加市里組織的乒乓球比賽,選中甲同學(xué)的概率為

“點(diǎn)睛”本題考查的是條形統(tǒng)計(jì)圖與扇形統(tǒng)計(jì)圖,根據(jù)題意得出樣本總數(shù)是解答此題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校買來鋼筆若干枝,可以平均分給(x﹣1)名同學(xué),也可分給(x﹣2)名同學(xué)(x為正整數(shù)).用代數(shù)式表示鋼筆的數(shù)量不可能的是( 。
A.x2+3x+2
B.3x1)(x2
C.x23x+2
D.x33x2+2x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算a(1+a)﹣a(1﹣a)的結(jié)果為(
A.2a
B.2a2
C.0
D.﹣2a+2a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別為(3,2)、(﹣1,0),若將線段BA繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BA′,則點(diǎn)A′的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=-2020x2+2019x有最_____值(填“大”或“小”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8,BC=6,P為AD上一點(diǎn),將△ABP沿BP翻折至△EBP,PE與CD相交于點(diǎn)O,BE與CD相交于點(diǎn)G,且OE=OD.
(1)求證:OP=OG;
(2)若設(shè)AP為x,試求CG(用含x的代數(shù)式表示);
(3)求AP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級(jí)所有學(xué)生參加2011年初中畢業(yè)英語口語、聽力自動(dòng)化考試,我們從中隨機(jī)抽取了部分學(xué)生的考試成績,將他們的成績進(jìn)行統(tǒng)計(jì)后分為A、B、C、D四等,并將統(tǒng)計(jì)結(jié)果繪制成如下的統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中所給信息解答下列問題:

(說明:A級(jí):25分~30分;B級(jí):20分~24分;C級(jí):15分~19分;D級(jí):15分以下)
(1)請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)扇形統(tǒng)計(jì)圖中D級(jí)所占的百分比是;
(3)扇形統(tǒng)計(jì)圖中A級(jí)所在的扇形的圓心角度數(shù)是;
(4)若該校九年級(jí)有850名學(xué)生,請(qǐng)你估計(jì)全年級(jí)A級(jí)和B級(jí)的學(xué)生人數(shù)共約為人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,E是AD上任意一點(diǎn),延長BA到F,使得AF=AE,連接DF:
(1)旋轉(zhuǎn)△ADF可得到哪個(gè)三角形?
(2)旋轉(zhuǎn)中心是哪一點(diǎn)?旋轉(zhuǎn)了多少度?
(3)BE與DF的數(shù)量關(guān)系、位置關(guān)系如何?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】邊長為724,25ABC內(nèi)有一點(diǎn)P到三邊的距離相等,則這個(gè)距離是( 。

A. 1.5 B. 3 C. 4 D. 6

查看答案和解析>>

同步練習(xí)冊(cè)答案