如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于點D,E是BC的中點,連接DE.
(1)求證:DE是⊙O的切線;
(2)連接OE,若AB=4,AD=3,求OE的長.
(1)證明:連接OD,BD,
∵AB為圓O的直徑,
∴∠ADB=90°,
在Rt△BDC中,E為斜邊BC的中點,
∴CE=DE=BE=
1
2
BC,
∴∠C=∠CDE,
∵OA=OD,∴∠A=∠ADO,
∵∠ABC=90°,即∠C+∠A=90°,
∴∠ADO+∠CDE=90°,即∠ODE=90°,
∴DE⊥OD,又OD為圓的半徑,
∴DE為圓O的切線;

(2)在Rt△ABD中,AB=4,AD=3,
根據(jù)勾股定理得:BD=
AB2-AD2
=
7
,
∵∠DAB=∠BAC,∠ADB=∠CBA=90°,
∴△ADB△ABC,
AD
AB
=
DB
BC
,即
3
4
=
7
BC
,
解得:BC=
4
7
3

在Rt△ABC中,根據(jù)勾股定理得:AC=
AB2+BC2
=
16
3

∵E為BC的中點,O為AB的中點,
∴OE為△ABC的中位線,
則OE=
1
2
AC=
8
3

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知AB⊥MN,垂足為點B,P是射線BN上的一個動點,AC⊥AP,∠ACP=∠BAP,AB=4,BP=x,CP=y,點C到MN的距離為線段CD的長.
(1)求y關(guān)于x的函數(shù)解析式,并寫出它的定義域;
(2)在點P的運動過程中,點C到MN的距離是否會發(fā)生變化?如果發(fā)生變化,請用x的代數(shù)式表示這段距離;如果不發(fā)生變化,請求出這段距離;
(3)如果圓C與直線MN相切,且與以BP為半徑的圓P也相切,求BP:PD的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,PA為⊙O的切線,A為切點,PO交⊙O于點B,PA=4,OA=3,則OP=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知⊙O的半徑為6cm,射線PM經(jīng)過點O,OP=10cm,射線PN與⊙O相切于點Q.A,B兩點同時從點P出發(fā),點A以5cm/s的速度沿射線PM方向運動,點B以4cm/s的速度沿射線PN方向運動.設(shè)運動時間為ts.
(1)求PQ的長;
(2)當t為何值時,直線AB與⊙O相切?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知AB為⊙O的直徑,PA與⊙O相切于點A,線段OP與弦AC垂直并相交于點D,OP與弧AC相交于點E,連接BC.
(1)求證:∠PAC=∠B,且PA•BC=AB•CD;
(2)若PA=10,sinP=
3
5
,求PE的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,PB為⊙O的切線,B為切點,連PO交⊙O于點A,PA=2,PO=5,則PB的長為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知AB、AC分別是⊙O的直徑和切線,BC交⊙O于D,AB=8,AC=6,則AD=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,P是AB的延長線上的一點,PC切⊙O于點C,⊙O的半徑為3,∠PCB=30度.
(1)求∠CBA的度數(shù);(2)求PA的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知PA,PB分別切⊙O于A、B,CD切⊙O于E,PO=13,AO=5,則△PCD周長為______.

查看答案和解析>>

同步練習冊答案