分析 連接HO并延長交BC于P,作EG⊥AD于G,設AE=1,根據直角三角形的性質求出EF、AF,設BE=x,CE=y,證明△ABE∽△ECF,根據相似三角形的性質表示出AB、CF、DF,結合圖形、根據勾股定理列出高次方程,解方程求出x、y的值,根據正弦的定義計算即可.
解答 解:連接HO并延長交BC于P,作EG⊥AD于G,
設AE=1,
∵∠AEF=90°,∠AFE=30°,
∴EF=$\sqrt{3}$,AF=2,
由切線長定理得,AH=AE=1,
設BE=x,CE=y,
∵∠B=∠C=90°,∠AEF=90°,
∴△ABE∽△ECF,
∴$\frac{AB}{EC}=\frac{BE}{CF}=\frac{AE}{EF}=\frac{1}{\sqrt{3}}$,
∴AB=$\frac{\sqrt{3}}{3}$y,CF=$\sqrt{3}$x,
則DF=$\frac{\sqrt{3}}{3}$y-$\sqrt{3}$x,
∵EG∥HP∥CD,OE=OF,
∴DH=HG=$\frac{1}{2}$DG=$\frac{1}{2}$EC=$\frac{1}{2}$y,
∵BE=x,CE=y,
∴AD=BC=x+y,
∴DH=x+y-1,
則x+y-1=$\frac{1}{2}$y,
在Rt△ADF中,AD2+DF2=AF2,即(x+y)2+($\frac{\sqrt{3}}{3}$y-$\sqrt{3}$x)2=4,
$\left\{\begin{array}{l}{x+y-1=\frac{1}{2}y}\\{4{x}^{2}+\frac{4}{3}{y}^{2}=4}\end{array}\right.$,
解得,$\left\{\begin{array}{l}{x=\frac{1}{7}}\\{y=\frac{12}{7}}\end{array}\right.$,
則DF=$\frac{\sqrt{3}}{3}$y-$\sqrt{3}$x=$\frac{3}{7}\sqrt{3}$,
∴sin∠DAF=$\frac{DF}{AF}$=$\frac{3}{14}\sqrt{3}$,
故答案為:$\frac{3}{14}\sqrt{3}$.
點評 本題考查的是圓的切線的性質、矩形的性質相似三角形的判定和性質、高次方程的解法以及勾股定理的應用,正確作出輔助線、靈活運用相關的性質定理是解題的關鍵.
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | y1>y2 | B. | y1=y2 | C. | y1<y2 | D. | 不能比較 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com