解方程:

解:

答案:
解析:

  解:       (4分)

         (6分)

  

                 (7分)

  經(jīng)檢驗:是原方程的根          (8分)


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

14、解方程|x-1|+|x+2|=5.由絕對值的幾何意義知,該方程表示求在數(shù)軸上與1和-2的距離之和為5的點(diǎn)對應(yīng)的x的值.在數(shù)軸上,1和-2的距離為3,滿足方程的x對應(yīng)點(diǎn)在1的右邊或-2的左邊,若x對應(yīng)點(diǎn)在1的右邊,由圖可以看出x=2;同理,若x對應(yīng)點(diǎn)在-2的左邊,可得x=-3,故原方程的解是x=2或x=-3.

參考閱讀材料,解答下列問題:
(1)方程|x+3|=4的解為
1和-7

(2)解不等式|x-3|+|x+4|≥9;
(3)若|x-3|+|x+4|≤a對任意的x都成立,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在解方程
x
x-1
=
1
x-1
+1時,甲、乙兩名同學(xué)的解法如下:
甲:原方程化為x=1+x-1,∴x=x,∴原方程的解為全體實數(shù).
乙:原方程化為
x
x-1
-
1
x-1
=1,∴
x-1
x-1
=1.∴原方程的解為當(dāng)x≠1時的任意實數(shù).以下判斷正確的是( 。
A、甲的解法正確,乙的解法錯誤
B、甲的解法錯誤,乙的解法正確
C、甲、乙的解法都正確
D、甲、乙的解法都錯誤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料:
為解方程(x-1)2-5(x-1)+4=0時,我們可以將x-1看作一個整體,然后設(shè)x-1=y….①,那么原方程可化為y2-5y+4=0,解得y1=1,y2=4.當(dāng)y=1時,x-1=1,∴x=2;當(dāng)y=4時,x-1=4,∴x=5;故原方程的解為x1=2,x2=5.
解答問題:
(1)上述解題過程,在由原方程得到方程①的過程中,運(yùn)用了
換元
換元
法達(dá)到了解方程的目的,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想;
(2)請利用以上知識解方程:(3x+5)2-4(3x+5)+3=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年山東臨沭第三初級中學(xué)九年級10月月考數(shù)學(xué)試卷(帶解析) 題型:解答題

閱讀下面例題的解答過程,體會并其方法,并借鑒例題的解法解方程。
例:解方程x2-1=0.
解:(1)當(dāng)x-1≥0即x≥1時,= x-1。
原化為方程x2-(x-1)-1=0,即x2-x=0
解得x1 =0.x2=1
∵x≥1,故x =0舍去,
∴x=1是原方程的解。
(2)當(dāng)x-1<0即x<1時,=-(x-1)。
原化為方程x2+(x-1)-1=0,即x2+x-2=0
解得x1 =1.x2=-2
∵x<1,故x =1舍去,
∴x=-2是原方程的解。
綜上所述,原方程的解為x1 =1.x2=-2
解方程x2-4=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年山東臨沭第三初級中學(xué)九年級10月月考數(shù)學(xué)試卷(解析版) 題型:解答題

閱讀下面例題的解答過程,體會并其方法,并借鑒例題的解法解方程。

例:解方程x2-1=0.

解:(1)當(dāng)x-1≥0即x≥1時,= x-1。

原化為方程x2-(x-1)-1=0,即x2-x=0

解得x1 =0.x2=1

∵x≥1,故x =0舍去,

∴x=1是原方程的解。

(2)當(dāng)x-1<0即x<1時,=-(x-1)。

原化為方程x2+(x-1)-1=0,即x2+x-2=0

解得x1 =1.x2=-2

∵x<1,故x =1舍去,

∴x=-2是原方程的解。

綜上所述,原方程的解為x1 =1.x2=-2

解方程x2-4=0.

 

查看答案和解析>>

同步練習(xí)冊答案