分析 (1)利用翻折變換對應邊關系得出AB=AF,∠B=∠AFG=90°,利用HL定理得出△ABG≌△AFG即可;
(2)由(1)可得∠FAG=$\frac{1}{2}$∠BAF,由折疊的性質可得∠EAF=$\frac{1}{2}$∠DAF,繼而可得∠EAG=$\frac{1}{2}$∠BAD=45°;
(2)首先設BG=x,則可得CG=6-x,GE=EF+FG=x+3,然后利用勾股定理GE2=CG2+CE2,得方程:(x+3)2=(6-x)2+32,解此方程即可求得答案.
解答 (1)證明;在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,
∵將△ADE沿AE對折至△AFE,
∴AD=AF,DE=EF,∠D=∠AFE=90°,
∴AB=AF,∠B=∠AFG=90°,
又∵AG=AG,
在Rt△ABG和Rt△AFG中,
$\left\{\begin{array}{l}{AG=AG}\\{AB=AF}\end{array}\right.$,
∴△ABG≌△AFG(HL);
(2)∵△ABG≌△AFG,
∴∠BAG=∠FAG,
∴∠FAG=$\frac{1}{2}$∠BAF,
由折疊的性質可得:∠EAF=∠∠DAE,
∴∠EAF=$\frac{1}{2}$∠DAF,
∴∠EAG=∠EAF+∠FAG=$\frac{1}{2}$(∠DAF+∠BAF)=$\frac{1}{2}$∠DAB=$\frac{1}{2}$×90°=45°;
(3)∵E是CD的中點,
∴DE=CE=$\frac{1}{2}$CD=$\frac{1}{2}$×6=3,
設BG=x,則CG=6-x,GE=EF+FG=x+3,
∵GE2=CG2+CE2
∴(x+3)2=(6-x)2+32,
解得 x=2,
∴BG=2.
點評 此題屬于四邊形的綜合題.考查了正方形的性質、折疊的性質、全等三角形的判定與性質以及勾股定理等知識.注意折疊中的對應關系、注意掌握方程思想的應用是解此題的關鍵.
科目:初中數(shù)學 來源: 題型:選擇題
A. | “奔跑吧,兄弟”節(jié)目的收視率 | B. | “神州十一號”飛船的零件合格率 | ||
C. | 某種品牌節(jié)能燈的使用壽命 | D. | 全國植樹節(jié)中栽植樹苗的成活率 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
銷售時段 | 銷售數(shù)量 | 銷售收入 | |
A種型號 | B種型號 | ||
第一周 | 3臺 | 6臺 | 7650元 |
第二周 | 4臺 | 10臺 | 11800元 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com