如圖①,二次函數(shù)的拋物線的頂點(diǎn)坐標(biāo)C,與x軸的交于A(1,0)、B(-3,0)兩點(diǎn),與y軸交于點(diǎn)D(0,3)

1.求這個(gè)拋物線的解析式

2.如圖②,過點(diǎn)A的直線與拋物線交于點(diǎn)E,交軸于點(diǎn)F,其中點(diǎn)E的橫坐標(biāo)為-2,若直線為拋物線的對(duì)稱軸,點(diǎn)G為直線上的一動(dòng)點(diǎn),則軸上是否存在一點(diǎn)H,使四點(diǎn)所圍成的四邊形周長最小,若存在,求出這個(gè)最小值及點(diǎn)G、H的坐標(biāo);若不存在,請(qǐng)說明理由;

3.如圖③,連接AC交y軸于M,在x軸上是否存在點(diǎn)P,使以P、C、M為頂點(diǎn)的三角形與△AOM相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

圖①                                      圖②

圖③

 

【答案】

 

1.設(shè)所求拋物線的解析式為:,將A(1,0)、B(-3,0)、 D(0,3)代入,得      …………………………………………2分

    即所求拋物線的解析式為:    ……………………………3分

2.如圖④,在y軸的負(fù)半軸上取一點(diǎn)I,使得點(diǎn)F與點(diǎn)I關(guān)于x軸對(duì)稱,

    在x軸上取一點(diǎn)H,連接HF、HI、HG、GD、GE,則HF=HI…………………①

    設(shè)過A、E兩點(diǎn)的一次函數(shù)解析式為:y=kx+b(k≠0),

    ∵點(diǎn)E在拋物線上且點(diǎn)E的橫坐標(biāo)為-2,將x=-2,代入拋物線,得

    ∴點(diǎn)E坐標(biāo)為(-2,3)………………………………………………………………4分

又∵拋物線圖象分別與x軸、y軸交于點(diǎn)A(1,0)、B(-3,0)、

D(0,3),所以頂點(diǎn)C(-1,4)

    ∴拋物線的對(duì)稱軸直線PQ為:直線x=-1,    [中國教#&~@育出%版網(wǎng)]

     ∴點(diǎn)D與點(diǎn)E關(guān)于PQ對(duì)稱,GD=GE……………………………………………②  

分別將點(diǎn)A(1,0)、點(diǎn)E(-2,3)

代入y=kx+b,得:

解得:

   過A、E兩點(diǎn)的一次函數(shù)解析式為:

y=-x+1         

∴當(dāng)x=0時(shí),y=1  

∴點(diǎn)F坐標(biāo)為(0,1)……………………5分 

=2………………………………………③ 

  又∵點(diǎn)F與點(diǎn)I關(guān)于x軸對(duì)稱,   

∴點(diǎn)I坐標(biāo)為(0,-1)   

……………………………………④

  又∵要使四邊形DFHG的周長最小,由于DF是一個(gè)定值,

    ∴只要使DG+GH+HI最小即可         ……………………………………6分

    由圖形的對(duì)稱性和①、②、③,可知,

    DG+GH+HF=EG+GH+HI

    只有當(dāng)EI為一條直線時(shí),EG+GH+HI最小

    設(shè)過E(-2,3)、I(0,-1)兩點(diǎn)的函數(shù)解析式為:

分別將點(diǎn)E(-2,3)、點(diǎn)I(0,-1)代入,得:

解得:

     過I、E兩點(diǎn)的一次函數(shù)解析式為:y=-2x-1

    ∴當(dāng)x=-1時(shí),y=1;當(dāng)y=0時(shí),x=-;  

    ∴點(diǎn)G坐標(biāo)為(-1,1),點(diǎn)H坐標(biāo)為(-,0)

    ∴四邊形DFHG的周長最小為:DF+DG+GH+HF=DF+EI

由③和④,可知:

    DF+EI=

∴四邊形DFHG的周長最小為.    …………………………………………7分

3.如圖⑤ ,

由(2)可知,點(diǎn)A(1,0),點(diǎn)C(-1,4),設(shè)過A(1,0),點(diǎn)C(-1,4)兩點(diǎn)的函數(shù)解析式為:,得:

解得:,

過A、C兩點(diǎn)的一次函數(shù)解析式為:y=-2x+2,當(dāng)x=0時(shí),y=2,即M的坐標(biāo)為(0,2);

由圖可知,△AOM為直角三角形,且,    ………………8分

要使,△AOM與△PCM相似,只要使△PCM為直角三角形,且兩直角邊之比為1:2即可,設(shè)P(,0),CM=,且∠CPM不可能為90°時(shí),因此可分兩種情況討論;    ……………………………………………………………………………9分

①當(dāng)∠CMP=90°時(shí),CM=,若,可求的P(-4,0),則CP=5,,即P(-4,0)成立,若由圖可判斷不成立;……………………………………………………………………………………10分

②當(dāng)∠PCM=90°時(shí),CM=,若,可求出

P(-3,0),則PM=,顯然不成立,若,更不可能成立.……11分

綜上所述,存在以P、C、M為頂點(diǎn)的三角形與△AOM相似,點(diǎn)P的坐標(biāo)為(-4,0)12分

【解析】(1)直接利用三點(diǎn)式求出二次函數(shù)的解析式;

(2)若四邊形DFHG的周長最小,應(yīng)將邊長進(jìn)行轉(zhuǎn)換,利用對(duì)稱性,要使四邊形DFHG的周長最小,由于DF是一個(gè)定值,只要使DG+GH+HI最小即可,   

   由圖形的對(duì)稱性和,可知,HF=HI,GD=GE,

 DG+GH+HF=EG+GH+HI

    只有當(dāng)EI為一條直線時(shí),EG+GH+HI最小, 即

,DF+EI=

即邊形DFHG的周長最小為.

(3)要使△AOM與△PCM相似,只要使△PCM為直角三角形,且兩直角邊之比為1:2即可,設(shè)P(,0),CM=,且∠CPM不可能為90°時(shí),因此可分兩種情況討論, ①當(dāng)∠CMP=90°時(shí),CM=,若,可求的P(-4,0),則CP=5,,即P(-4,0)成立,若由圖可判斷不成立; ②當(dāng)∠PCM=90°時(shí), CM=,若,可求出P(-3,0),則PM=,顯然不成立,若,更不可能成立.   即求出以P、C、M為頂點(diǎn)的三角形與△AOM相似的P的坐標(biāo)(-4,0)

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,一小孩將一只皮球從A處拋出去,它所經(jīng)過的路線是某個(gè)二次函數(shù)圖象的一部分,如果他的出手處A距地面的距離OA為1m,球路的最高點(diǎn)B(8,9),則這個(gè)二次函數(shù)的表達(dá)式為
 
,小孩將球拋出了約
 
米(精確到0.1m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖2,一小孩將一只皮球從A處拋出去,它所經(jīng)過的路線是某個(gè)二次函數(shù)圖象的一部分,如果他的出手處A距地面的距離OA為1 m,球路的最高點(diǎn)B(8,9),則這個(gè)二次函數(shù)的表達(dá)式為______,小孩將球拋出了約______米(精確到0.1 m).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖2,一小孩將一只皮球從A處拋出去,它所經(jīng)過的路線是某個(gè)二次函數(shù)圖象的一部分,如果他的出手處A距地面的距離OA為1 m,球路的最高點(diǎn)B(8,9),則這個(gè)二次函數(shù)的表達(dá)式為______,小孩將球拋出了約______米(精確到0.1 m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011屆河南省周口市初三下冊26章《二次函數(shù)》檢測題 題型:填空題

如圖2,一小孩將一只皮球從A處拋出去,它所經(jīng)過的路線是某個(gè)二次函數(shù)圖象的一部分,如果他的出手處A距地面的距離OA為1 m,球路的最高點(diǎn)B(8,9),則這個(gè)二次函數(shù)的表達(dá)式為______,小孩將球拋出了約______米(精確到0.1 m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年河南省周口市初三下冊26章《二次函數(shù)》檢測題 題型:填空題

如圖2,一小孩將一只皮球從A處拋出去,它所經(jīng)過的路線是某個(gè)二次函數(shù)圖象的一部分,如果他的出手處A距地面的距離OA為1 m,球路的最高點(diǎn)B(8,9),則這個(gè)二次函數(shù)的表達(dá)式為______,小孩將球拋出了約______米(精確到0.1 m).

 

查看答案和解析>>

同步練習(xí)冊答案