精英家教網(wǎng)矩形ABCD的邊長AB=6,BC=4,點F在DC上,DF=2.動點M、N分別從點D、B同時出發(fā),沿線段DA、線段BA向點A的方向運動,當動點M運動到點A時,M、N兩點同時停止運動.連接FM、FN.設(shè)點M、N的運動速度都是1個單位/秒,M、N運動的時間為x秒,問:當x為多少時,F(xiàn)M⊥FN?
分析:首先構(gòu)造直角三角形,用x表示出各部分的長度,再結(jié)合勾股定理求出x的值.
解答:精英家教網(wǎng)解:連接MN,做NP⊥DC,
當FM⊥FN時,即△MFN為直角三角形,
∴FM2+FN2=MN2,
∵MN2=AM2+AN2
DM2+DF2=FM2,PF2+PN2=FN2
又∵設(shè)點M、N的運動速度都是1個單位/秒,矩形ABCD的邊長AB=6,BC=4,DF=2,M、N運動的時間為x秒,DM=x,AM=4-x,AN=6-x,PN=4,PF=6-2-x,
∴DM2+DF2+PF2+PN2=AM2+AN2,
∴x2+4+(4-x)2+16=(4-x)2+(6-x)2,
解得:x=
4
3
,
∴當x為
4
3
時FM⊥FN.
點評:此題主要考查了勾股定理的應(yīng)用,以及動點問題,解決問題的關(guān)鍵是得出個部分線段的長度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD的邊長AB=9,AD=3,將此矩形置于平面直角坐標系xOy中,使AB在x軸正半軸上,經(jīng)過點C的直線y=
12
x-2
與x軸交于點E,則四邊形AECD的面積是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD的邊長AB=1,AD=
3
,如果矩形ABCD以B為中心,按順時針方向旋轉(zhuǎn)到ABCD的位置(點A′落在對角線BD上),則△BDD′的形狀為
 
三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知矩形ABCD的邊長AB=3cm,BC=6cm,某一時刻,動點M從點A出發(fā)沿AB方向以1cm∕s的速度向點B勻速運動;同時,動點N從點D沿DA方向以2cm∕s的速度向點A勻速運動.經(jīng)過多少時間,△AMN的面積等于矩形ABCD面積的
19
?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD的邊長AB=4,BC=8,點E在BC上由B向C運動,點F在CD上以每秒1個單位的速度由C向D運動,已知E、F兩點同時運動,且點E的速度是點F的2倍.設(shè)運動時間為t,解答下列問題:
(1)設(shè)△AEF的面積為S,求S與t之間的函數(shù)關(guān)系式;
(2)當線段EF與BD平行時,試求△AEF的面積,并確定點E、F的位置;
(3)是否存在t值,使△AEF的面積為△ABE與△ECF的面積和的3倍?若存在,請求出t的值;若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD的邊長AB=4,BC=2,則在邊CD上,存在( 。﹤點P,使∠APB=90°.

查看答案和解析>>

同步練習(xí)冊答案