精英家教網(wǎng)已知:如圖,BD、CE都是△ABC的高.F是BD上一點,G是CE延長線上一點,∠FAB=∠G.
(1)若∠FAD=∠FBC,試說明AG∥BC;
(2)若BF=AC,試探索線段AF和AG的關(guān)系,并說明理由.
分析:(1)首先根據(jù)已知條件求證出關(guān)于直線AG,BC的內(nèi)錯角∠G=∠ECB,則滿足AG∥BC的條件;
(2)根據(jù)平行線的性質(zhì)和已知條件求證出△BAF≌△CGA,則得到AF=AG,然后通過等量代換求出∠GAF=90°所以AG⊥AF.
解答:解:(1)設(shè)BD、CE交于O,
∵BD、CE是高,
∴∠BEO=∠CDO=90°,
∴∠BOE+∠EBO=∠COD+∠OCD=90°,
∵∠BOE=∠COD,
∴∠EBO=∠OCD,
∵∠EBO+∠FBC+∠ECB=90°,
∠FAD+∠BAF+∠OCD=90°,
∵∠FAD=∠FBC,
∴∠ECB=∠BAF,
∵∠BAF=∠G,
∴∠G=∠ECB,
∴AG∥BC;

(2)AF⊥AG,AF=AG.
∵在△BAF和△CGA中,
∠ABF=∠GCA
∠BAF=∠G
BF=AC
,
∴△BAF≌△CGA(AAS),
∴AF=AG,
在Rt△AGE中,
∵∠AEG=90°,
∴∠G+∠GAE=90°,
∵∠G=∠BAF,
∴∠GAE+∠BAF=90°,
即∠GAF=90°,
∴AG⊥AF.
點評:本題綜合考查了平行線的性質(zhì),平行線的判定條件,全等三角形的判定條件,以及垂直定理;做題時要熟練應用這些知識.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,BD是AC邊上的高,DE⊥BC于E,BE:EC=5:1.若AD=2,AB=8.
求:CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,BD平分∠ABC,CE平分∠ACE,BD與CE交于點I,試說明∠BIC=90°+
12
∠A.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

22、已知,如圖,BD是∠ABC的平分線,AB=BC,點P在BD上,PM⊥AD,PN⊥CD,垂足分別是M、N.試說明:PM=PN.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,BD為⊙O的直徑,點A是劣弧BC的中點,AD交BC于點E,連接AB.
(1)求證:AB2=AE•AD;
(2)過點D作⊙O的切線,與BC的延長線交于點F,若AE=2,ED=4,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,BD、CE是△ABC的兩條高,M是BC的中點.求證:ME=MD.

查看答案和解析>>

同步練習冊答案