如圖,在扇形OAB中,∠AOB=110°,半徑OA=12,將扇形OAB沿過點(diǎn)B的直線折疊,點(diǎn)O恰好落在
AB
上的點(diǎn)D處,折痕交OA于點(diǎn)C,求
AD
的長.
分析:連結(jié)OD,先根據(jù)折疊的性質(zhì)得到BC垂直平分OD,則BD=BO,易得△OBD為等邊三角形,所以∠DOB=60°,則∠AOD=∠AOB-∠DOB=50°,然后根據(jù)弧長公式求解.
解答:解:連結(jié)OD,如圖,
∵扇形OAB沿過點(diǎn)B的直線折疊,點(diǎn)O恰好落在
AB
上的點(diǎn)D處,折痕交OA于點(diǎn)C
∴BC垂直平分OD,
∴BD=BO,
∵OB=OD,
∴△OBD為等邊三角形,
∴∠DOB=60°,
∴∠AOD=∠AOB-∠DOB=110°-60°=50°,
AD
的長度=
50•π•12
180
=
10π
3
點(diǎn)評:本題考查了折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.也考查了弧長公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在扇形OAB中,OP⊥AB于點(diǎn)P,半徑為4,OP=2.
(1)求AB的長;
(2)求∠AOB的度數(shù);
(3)求扇形OAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•吉林)如圖,在扇形OAB中,∠AOB=90°,半徑OA=6.將扇形OAB沿過點(diǎn)B的直線折疊,點(diǎn)O恰好落在
AB
上點(diǎn)D處,折痕交OA于點(diǎn)C,求整個陰影部分的周長和面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•平頂山二模)如圖,在扇形OAB中,∠AOB=90°,半徑OA=6.將沿過點(diǎn)B的直線折疊,點(diǎn)O恰好落
AB
上點(diǎn)D處,折痕交OA于點(diǎn)C,求整個陰影部分的面積為
9π-12
3
9π-12
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•老河口市模擬)如圖,在扇形OAB中,∠AOB=120°,OA=2,以A為圓心,AO長為半徑畫弧交
AB
于點(diǎn)C,則圖中陰影部分的面積為
3
3

查看答案和解析>>

同步練習(xí)冊答案