關(guān)于x的一元二次方程x2-mx+5(m-5)=0的兩個(gè)正實(shí)數(shù)根分別為x1,x2,且2x1+x2=7,則m的值是( )
A.2
B.6
C.2或6
D.7
【答案】分析:根據(jù)一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系和兩根都為正根得到x1+x2=m>0,x1•x2=5(m-5)>0,則m>5,由2x1+x2=7得到m+x1=7,即x1=7-m,x2=2m-7,于是有(7-m)(2m-7)=5(m-5),然后解方程得到滿足條件的m的值.
解答:解:根據(jù)題意得x1+x2=m>0,x1•x2=5(m-5)>0,
則m>5,
∵2x1+x2=7,
∴m+x1=7,即x1=7-m,
∴x2=2m-7,
∴(7-m)(2m-7)=5(m-5),
整理得m2-8m+12=0,
(m-2)(m-6)=0,
解得m1=2,m2=6,
∵m>5,
∴m=6.
故選B.
點(diǎn)評(píng):本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系:若方程兩根分別為x1,x2,則x1+x2=-,x1•x2=.也考查了一元二次方程的解法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•北侖區(qū)二模)若關(guān)于x的一元二次方程a(x+m)2=3兩個(gè)實(shí)根為x1=-1,x2=3,則拋物線y=a(x+m-2)2-3與x軸的交點(diǎn)橫坐標(biāo)分別是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知方程(m-2)xm2-5m-8+(m-3)x+5=0是關(guān)于x的一元二次方程,則m=
65
2
65
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•沈陽)若關(guān)于x的一元二次方程x2+4x+a=0有兩個(gè)不相等的實(shí)數(shù)根,則a的取值范圍是
a<4
a<4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•蘭州一模)若x1,x2是關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個(gè)根,則方程的兩個(gè)根x1,x2和系數(shù)a,b,c有如下關(guān)系:x1+x2=-
b
a
,x1•x2=
c
a
,把它們稱為一元二次方程根與系數(shù)關(guān)系定理,請(qǐng)利用此定理解答一下問題:
已知x1,x2是一員二次方程(m-3)x2+2mx+m=0的兩個(gè)實(shí)數(shù)根.
(1)是否存在實(shí)數(shù)m,使-x1+x1x2=4+x2成立?若存在,求出m的值,若不存在,請(qǐng)你說明理由;
(2)若|x1-x2|=
3
,求m的值和此時(shí)方程的兩根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•瀘州)若關(guān)于x的一元二次方程kx2-2x-1=0有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案