已知:如圖,過(guò)點(diǎn)C(2,1)分別作x軸、y軸的平行線,交直線y=-x+4于B、A兩點(diǎn),若二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn)O,且頂點(diǎn)在矩形ADBC內(nèi)(包括三邊上),則a的取值范圍是
-
1
2
≤a≤-
1
9
-
1
2
≤a≤-
1
9
分析:由過(guò)點(diǎn)C(2,1)分別作x軸、y軸的平行線,交直線y=-x+4于B、A兩點(diǎn),即可求得點(diǎn)A與B的坐標(biāo),繼而求得點(diǎn)D的坐標(biāo),又由二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn)O,且頂點(diǎn)在矩形ADBC內(nèi)(包括三邊上),可得a<0,然后由|a|越大,開(kāi)口越小,可得當(dāng)頂點(diǎn)在頂點(diǎn)在AC上時(shí),a最小,當(dāng)頂點(diǎn)在頂點(diǎn)在BD上時(shí),a最大,繼而求得答案.
解答:解:∵過(guò)點(diǎn)C(2,1)分別作x軸、y軸的平行線,交直線y=-x+4于B、A兩點(diǎn),
∴點(diǎn)A(2,2),點(diǎn)B(3,1),
∵四邊形ABCD是矩形,
∴D(3,2),
∵二次函數(shù)頂點(diǎn)y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn)O,且在矩形ADBC內(nèi)(包括三邊上),
∴a<0,
∵|a|越大,開(kāi)口越小,
即a越小,開(kāi)口越小,
∴當(dāng)頂點(diǎn)在頂點(diǎn)在AC上時(shí),a最小,
設(shè)此時(shí)頂點(diǎn)坐標(biāo)為(2,m),且1≤m≤2,
則二次函數(shù)的解析式為:y=a(x-2)2+m,
∵二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn)O,
∴a(0-2)2+m=0,
解得:a=-
m
4
,
∴當(dāng)m=2時(shí),a最小,a=-
1
2
;
∴當(dāng)頂點(diǎn)在頂點(diǎn)在BD上時(shí),a最大,
設(shè)此時(shí)頂點(diǎn)坐標(biāo)為(3,n),且1≤n≤2,
則二次函數(shù)的解析式為:y=a(x-3)2+n,
∵二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn)O,
∴a(0-3)2+n=0,
解得:a=-
n
9
,
∴當(dāng)m=1時(shí),a最大,a=-
1
9

∴a的取值范圍是:-
1
2
≤a≤-
1
9

故答案為:-
1
2
≤a≤-
1
9
點(diǎn)評(píng):此題考查了二次函數(shù)的性質(zhì)、二次函數(shù)的解析式一般式與頂點(diǎn)式以及矩形的性質(zhì)等知識(shí).此題綜合性較強(qiáng),難度較大,注意掌握方程思想、分類討論思想與數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

1、已知立方體如圖,過(guò)點(diǎn)A與平面CB/平行的棱的條數(shù)有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖,過(guò)點(diǎn)A、O的圓與y軸相交于一點(diǎn)C,與AB相交于一點(diǎn)E,直線AB的解析式為y=kx+4k,過(guò)點(diǎn)A、O的拋物線y=ax2+bx+c的頂點(diǎn)為P.
(1)若點(diǎn)C的坐標(biāo)為(0,
4
3
3
),AC平分∠BAO,求點(diǎn)B的坐標(biāo);
(2)若AC=
2
OE,且點(diǎn)P在AB上,是否存在實(shí)數(shù)m,對(duì)于拋物線y=ax2+bx+c上任意一點(diǎn)M(x,y),都能使(x+2)2+(y-2+m)2=(y-2-m)2成立?若存在,求出m的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,過(guò)點(diǎn)O且半徑為5的⊙P交x的正半軸于點(diǎn)M(2m,0),交y軸的負(fù)半軸于點(diǎn)D;弧OBM與弧OAM關(guān)于x軸對(duì)稱,其中A、B、C是過(guò)點(diǎn)P且垂直于x軸的直線與兩弧及圓的交點(diǎn),以點(diǎn)B為頂點(diǎn)且過(guò)點(diǎn)D的拋物線l交⊙P與另一點(diǎn)E.
(1)當(dāng)m=4時(shí),求出拋物線l的函數(shù)關(guān)系式并寫(xiě)出點(diǎn)E的坐標(biāo);
(2)當(dāng)m取何值時(shí),四邊形BDCE面積最大?最大面積是多少?
(3)是否存在實(shí)數(shù)m,使得四邊形BDCE為菱形?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011屆黑龍江省大慶市三十二中九年級(jí)下學(xué)期質(zhì)量檢測(cè)數(shù)學(xué)卷 題型:解答題

(本題10分)已知,如圖,過(guò)點(diǎn)作平行于軸的直線,拋物線上的兩點(diǎn)的橫坐標(biāo)分別為1和4,直線軸于點(diǎn),過(guò)點(diǎn)分別作直線的垂線,垂足分別為點(diǎn)、,連接

【小題1】(1)求點(diǎn)的坐標(biāo);
【小題2】(2)求證:
【小題3】(3)點(diǎn)是拋物線對(duì)稱軸右側(cè)圖象上的一動(dòng)點(diǎn),過(guò)點(diǎn)軸于點(diǎn),是否存在點(diǎn)使得相似?若存在,請(qǐng)求出所有符合條件的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案