如圖,開口向下的拋物線y=ax2-8ax+12a與x軸交于A、B兩點(diǎn),拋物線上另有一點(diǎn)C在第一象限,且使△精英家教網(wǎng)OCA∽△OBC.
(1)求OC的長(zhǎng)及
BCAC
的值;
(2)設(shè)直線BC與y軸交于P點(diǎn),點(diǎn)C是BP的中點(diǎn)時(shí),求直線BP和拋物線的解析式.
(3)在(2)的條件下,在x軸上是否存在一點(diǎn)Q,使△OCQ是等腰三角形?不存在,請(qǐng)說(shuō)明理由;存在,寫出Q點(diǎn)坐標(biāo).
分析:(1)令拋物線中y=0,可得出A、B的坐標(biāo),即可確定OA,OB的長(zhǎng).根據(jù)△OCA∽△OBC,可得出關(guān)于OC、OA、OB的比例關(guān)系式即可求出OC的長(zhǎng).
根據(jù)圖象可知:BC2:AC2正好是三角形OBC和三角形OAC的面積比,而這兩個(gè)等高三角形的面積比等于底邊OB、OA的比,因此BC2:AC2=OB:OA,據(jù)此可求出
BC
AC
的值.
(2)C是BP中點(diǎn),因此C的橫坐標(biāo)是B點(diǎn)橫坐標(biāo)的一半,在(1)中已經(jīng)求得了OC的長(zhǎng),因此不難得出C點(diǎn)的坐標(biāo).將C點(diǎn)坐標(biāo)代入拋物線中即可求出拋物線的解析式,根據(jù)B、C的坐標(biāo),可用待定系數(shù)法求出直線BP的解析式.
(3)應(yīng)該有四個(gè)符合條件的點(diǎn):
①以O(shè)為圓心,OC為半徑作弧,交x軸于兩點(diǎn),這兩點(diǎn)均符合Q點(diǎn)要求,此時(shí)OC=OQ,已知了OC的長(zhǎng),即可求出Q點(diǎn)坐標(biāo).
②以C為圓心,CO為半徑作弧,交x軸于兩點(diǎn),除O點(diǎn)外的另一個(gè)交點(diǎn)也符合Q點(diǎn)要求,此時(shí)CO=CQ,Q點(diǎn)坐標(biāo)是C點(diǎn)坐標(biāo)的2倍,由此可求得Q點(diǎn)坐標(biāo)(其實(shí)此時(shí)Q與B重合).
③作OC的垂直平分線,與x軸的交點(diǎn),也符合Q點(diǎn)要求,此時(shí)OQ=CQ,可設(shè)出Q點(diǎn)坐標(biāo),用坐標(biāo)系兩點(diǎn)間距離公式表示出QO和CQ的長(zhǎng),即可求出Q點(diǎn)坐標(biāo).
解答:解:(1)由題設(shè)知a<0,且方程ax2-8ax+12a=0有兩二根x1=2,x2=6,
于是OA=2,OB=6,
∵△OCA∽△OBC,
∴OC2=OA•OB=12,
即OC=2
3
,
BC2
AC2
=
SOBC
SOCA
=
OB
OA
=3,
BC
AC
=
3


(2)∵C是BP的中點(diǎn)
∴OC=BC從而C點(diǎn)的橫坐標(biāo)為3,
又∵OC=2
3

∴C(3,
3
),
設(shè)直線BP的解析式為y=kx+b,
因其過(guò)點(diǎn)B(6,0),C(3,
3
),
則有
0=6k+b
3
=3k+b
,
k=-
3
3
b=2
3

∴y=-
3
3
x+2
3
,
又點(diǎn)C(3,
3
)在拋物線上,
3
=9a-24a+12a,
∴a=-
3
3

∴拋物線解析式為:y=-
3
3
x2+
8
3
3
x-4
3
;

(3)點(diǎn)Q的坐標(biāo)分別為(2
3
,0)、(-2
3
,0)、(6,0)、(2,0).
點(diǎn)評(píng):本題考查了相似三角形的性質(zhì)、一次函數(shù)與二次函數(shù)解析式的確定、等腰三角形的判定等知識(shí).
(3)題中要把所有的情況都考慮到,不要漏解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,開口向下的拋物線y=ax2-8ax+12a與x軸交于A、B兩點(diǎn),拋物線上另有一點(diǎn)C在第一精英家教網(wǎng)象限,且使△OCA∽△OBC,
(1)求OC的長(zhǎng)及
BCAC
的值;
(2)設(shè)直線BC與y軸交于P點(diǎn),點(diǎn)C是BP的中點(diǎn)時(shí),求直線BP和拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,開口向下的拋物線y=ax2+hx+c交y軸的正半軸于點(diǎn)A,對(duì)稱軸是直線x=1,則下列結(jié)論正確的是( 。
A、a+2b+4c<0B、c<0C、2a+b-c=0D、b=-2a

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年中考數(shù)學(xué)預(yù)測(cè)試卷(三)(解析版) 題型:解答題

如圖,開口向下的拋物線y=ax2-8ax+12a與x軸交于A、B兩點(diǎn),拋物線上另有一點(diǎn)C在第一象限,且使△OCA∽△OBC,
(1)求OC的長(zhǎng)及的值;
(2)設(shè)直線BC與y軸交于P點(diǎn),點(diǎn)C是BP的中點(diǎn)時(shí),求直線BP和拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年湖北省黃岡中學(xué)自主招生考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,開口向下的拋物線y=ax2-8ax+12a與x軸交于A、B兩點(diǎn),拋物線上另有一點(diǎn)C在第一象限,且使△OCA∽△OBC,
(1)求OC的長(zhǎng)及的值;
(2)設(shè)直線BC與y軸交于P點(diǎn),點(diǎn)C是BP的中點(diǎn)時(shí),求直線BP和拋物線的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案