如圖,拋物線(xiàn)y = ax2 + bx + 4與x軸的兩個(gè)交點(diǎn)分別為A(-4,0)、B(2,0),與y軸交于點(diǎn)C,頂點(diǎn)為DE(1,2)為線(xiàn)段BC的中點(diǎn),BC的垂直平分線(xiàn)與x軸、y軸分別交于F、G

(1)求拋物線(xiàn)的函數(shù)解析式,并寫(xiě)出頂點(diǎn)D的坐標(biāo);

(2)在直線(xiàn)EF上求一點(diǎn)H,使△CDH的周長(zhǎng)最小,并求出最小周長(zhǎng);

(3)若點(diǎn)Kx軸上方的拋物線(xiàn)上運(yùn)動(dòng),當(dāng)K運(yùn)動(dòng)到什么位置時(shí),

EFK的面積最大?并求出最大面積.

 

 

(1)    頂點(diǎn)D的坐標(biāo)為(-1,

(2)H,

(3)K(-

解析:

(1)由題意,得  解得b=-1.

所以?huà)佄锞(xiàn)的解析式為,頂點(diǎn)D的坐標(biāo)為(-1,).

(2)設(shè)拋物線(xiàn)的對(duì)稱(chēng)軸與x軸交于點(diǎn)M.因?yàn)?i>EF垂直平分BC,即C關(guān)于直線(xiàn)EG的對(duì)稱(chēng)點(diǎn)為B,連結(jié)BD交于EF于一點(diǎn),則這一點(diǎn)為所求點(diǎn)H,使DH+ CH最小,即最小為

DH + CH = DH + HB = BD =.而

∴△CDH的周長(zhǎng)最小值為CD + DR + CH =

設(shè)直線(xiàn)BD的解析式為y = k1x + b,則  解得 ,b1 = 3.

所以直線(xiàn)BD的解析式為y =x+ 3.

由于BC= 2CE= BC∕2 =,Rt△CEG∽△COB

CE : CO = CG : CB,所以 CG = 2.5,GO = 1.5.G(0,1.5).

同理可求得直線(xiàn)EF的解析式為y =x+

聯(lián)立直線(xiàn)BDEF的方程,解得使△CDH的周長(zhǎng)最小的點(diǎn)H,).

(3)設(shè)Kt),xFtxE.過(guò)Kx軸的垂線(xiàn)交EFN

KN = yKyN =-(t +)=

所以 SEFK = SKFN + SKNE =KNt+ 3)+KN(1-t)= 2KN = -t2-3t + 5 =-(t+2 +

即當(dāng)t =-時(shí),△EFK的面積最大,最大面積為,此時(shí)K(-).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、已知:如圖,拋物線(xiàn)C1,C2關(guān)于x軸對(duì)稱(chēng);拋物線(xiàn)C1,C3關(guān)于y軸對(duì)稱(chēng).拋物線(xiàn)C1,C2,C3與x軸相交于A、B、C、D四點(diǎn);與y相交于E、F兩點(diǎn);H、G、M分別為拋物線(xiàn)C1,C2,C3的頂點(diǎn).HN垂直于x軸,垂足為N,且|OE|>|HN|,|AB|≠|(zhì)HG|
(1)A、B、C、D、E、F、G、H、M9個(gè)點(diǎn)中,四個(gè)點(diǎn)可以連接成一個(gè)四邊形,請(qǐng)你用字母寫(xiě)出下列特殊四邊形:菱形
AHBG
;等腰梯形
HGEF
;平行四邊形
EGFM
;梯形
DMHC
;(每種特殊四邊形只能寫(xiě)一個(gè),寫(xiě)錯(cuò)、多寫(xiě)記0分)
(2)證明其中任意一個(gè)特殊四邊形;
(3)寫(xiě)出你證明的特殊四邊形的性質(zhì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,拋物線(xiàn)交x軸于點(diǎn)A(-2,0),點(diǎn)B(4,0),交y軸于點(diǎn)C(0,4).
(1)求拋物線(xiàn)的解析式,并寫(xiě)出頂點(diǎn)D的坐標(biāo);
(2)若直線(xiàn)y=x交拋物線(xiàn)于M,N兩點(diǎn),交拋物線(xiàn)的對(duì)稱(chēng)軸于點(diǎn)E,連接BC,EB,EC.試判斷△EBC的形狀,并加以證明;
(3)設(shè)P為直線(xiàn)MN上的動(dòng)點(diǎn),過(guò)P作PF∥ED交直線(xiàn)MN上方的拋物線(xiàn)于點(diǎn)F.問(wèn):在直線(xiàn)MN上是否存在點(diǎn)P,使得以P,E,D,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)P及相應(yīng)的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線(xiàn)的頂點(diǎn)坐標(biāo)為M(1,4),與x軸的一個(gè)交點(diǎn)是A(-1,0),與y軸交于點(diǎn)B,直線(xiàn)x=1交x軸于點(diǎn)N.
(1)求拋物線(xiàn)的解析式及點(diǎn)B的坐標(biāo);
(2)求經(jīng)過(guò)B、M兩點(diǎn)的直線(xiàn)的解析式,并求出此直線(xiàn)與x軸的交點(diǎn)C的坐標(biāo);
(3)若點(diǎn)P在拋物線(xiàn)的對(duì)稱(chēng)軸x=1上運(yùn)動(dòng),請(qǐng)你探索:在x軸上方是否存在這樣的P點(diǎn),使精英家教網(wǎng)以P為圓心的圓經(jīng)過(guò)點(diǎn)A,并且與直線(xiàn)BM相切?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線(xiàn)y=ax2+bx+c交x軸于點(diǎn)A(-3,0),點(diǎn)B(1,0),交y軸于點(diǎn)E(0,-3)精英家教網(wǎng).點(diǎn)C是點(diǎn)A關(guān)于點(diǎn)B的對(duì)稱(chēng)點(diǎn),點(diǎn)F是線(xiàn)段BC的中點(diǎn),直線(xiàn)l過(guò)點(diǎn)F且與y軸平行.直線(xiàn)y=-x+m過(guò)點(diǎn)C,交y軸于D點(diǎn).
(1)求拋物線(xiàn)的函數(shù)表達(dá)式;
(2)點(diǎn)K為線(xiàn)段AB上一動(dòng)點(diǎn),過(guò)點(diǎn)K作x軸的垂線(xiàn)與直線(xiàn)CD交于點(diǎn)H,與拋物線(xiàn)交于點(diǎn)G,求線(xiàn)段HG長(zhǎng)度的最大值;
(3)在直線(xiàn)l上取點(diǎn)M,在拋物線(xiàn)上取點(diǎn)N,使以點(diǎn)A,C,M,N為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,拋物線(xiàn)y=ax2+bx+c(a≠0)與x軸兩交點(diǎn)是A(-1,0),B(3,0),則如圖可知y<0時(shí),x的取值范圍是( 。
A、-1<x<3B、3<x<-1C、x>-1或x<3D、x<-1或x>3

查看答案和解析>>

同步練習(xí)冊(cè)答案