已知一次函數(shù)的圖象經(jīng)過點A(-3,4),B(-1,-2).
(1)求出這個一次函數(shù)的解析式,并作出它的圖象
(2)求△AOB的面積.
(3)由圖象觀察,當-4≤x≤1時,函數(shù)y的變化范圍.

解:(1)設這個一次函數(shù)的解析式為y=kx+b,則:
,
解得
∴這個一次函數(shù)的解析式是y=-3x-5,
圖象如圖所示:

(2)作AM⊥y軸于M,作BN⊥x軸于N,則△AOB的面積為:
S△AOB=S梯形AMNB-S△AOM-S△BON=,
∴△AOB的面積為5;

(3)由圖象可知,當-4≤x≤1時,函數(shù)y的變化范圍是-7≤y≤8.
分析:(1)先設出函數(shù)的解析式為y=kx+b(k≠0),再利用待定系數(shù)法把A(-3,4),B(-1,-2)代入解析式,可得二元一次方程組,再解方程組可得到k,b的值,進而得到函數(shù)解析式,然后再畫出圖象即可;
(2)作AM⊥y軸于M,作BN⊥軸于N,S△AOB=S梯形AMNB-S△AOM-S△BON,代入數(shù)計算即可;
(3)從圖象上可以直接看出答案.
點評:此題主要考查了待定系數(shù)法求函數(shù)解析式,畫函數(shù)圖象,求三角形的面積,解題的關鍵是求出解析式,畫出圖象.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

某通信器材公司銷售一種市場需求較大的新型通訊產(chǎn)品.已知每件產(chǎn)品的進價為40元,每年銷售該種產(chǎn)品的總開支(不含進價)總計120萬元.在銷售過程中發(fā)現(xiàn),年銷售量y(萬件)與銷售單價x(元)之間存在著一次函數(shù)關系y=
1
20k
x+b
,其中整數(shù)k使式子
k+1
+
1-k
有意義.經(jīng)測算,銷售單價60元時,年銷售量為50000件.
(1)求出這個函數(shù)關系式;
(2)試寫出該公司銷售該種產(chǎn)品的年獲利z(萬元)關于銷售單價x(元)的函數(shù)關系式(年獲利=年銷售額-年銷售產(chǎn)品總進價-年總開支).當銷售單價x為何值時,年獲利最大并求這個最大值;
(3)若公司希望該種產(chǎn)品一年的銷售獲利不低于40萬元,借助(2)中函數(shù)的圖象,請你幫助該公司確定銷售單價的范圍.在此情況下,要使產(chǎn)品銷售量最大,你認為銷售單價應定為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知一個正比例函數(shù)和一個一次函數(shù),它們的圖象都經(jīng)過點P(-3,3),且一次函數(shù)的圖象經(jīng)與y軸相交于點Q(0,-2),求這兩個函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知一個正比例函數(shù)和一個一次函數(shù),它們的圖象都經(jīng)過點P(-3,3),且一次函數(shù)的圖象經(jīng)與y軸相交于點Q(0,-2),求這兩個函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

先閱讀,然后解決問題:

已知:一次函數(shù)和反比例函數(shù),求這兩個函數(shù)圖象在同一坐標系內(nèi)的交點坐標。

解:解方程-x+2=

   去分母,得

-x2+2x=-8

整理得

x2-2x-8=0

解這個方程得:x1=-2  x2=4

經(jīng)檢驗,x1=-2 x2=4是原方程的根

當x1=-2,y1=4;x2=4,y2=-2

∴交點坐標為(-2,4)和(4,-2)

問題:

1.在同一直角坐標系內(nèi),求反比例函數(shù)y=的圖象與一次函數(shù)y=x+3的圖象的交點坐標;

2.判斷一次函數(shù)y=2x-3的圖象與反比例函數(shù)y=-的圖象在同一直角坐標系內(nèi)有無交點,說明理由.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年江蘇省九年級上學期期中數(shù)學卷 題型:解答題

先閱讀,然后解決問題:

已知:一次函數(shù)和反比例函數(shù),求這兩個函數(shù)圖象在同一坐標系內(nèi)的交點坐標。

解:解方程-x+2=

   去分母,得

-x2+2x=-8

整理得

x2-2x-8=0

解這個方程得:x1=-2  x2=4

經(jīng)檢驗,x1=-2 x2=4是原方程的根

當x1=-2,y1=4;x2=4,y2=-2

∴交點坐標為(-2,4)和(4,-2)

問題:

1.在同一直角坐標系內(nèi),求反比例函數(shù)y=的圖象與一次函數(shù)y=x+3的圖象的交點坐標;

2.判斷一次函數(shù)y=2x-3的圖象與反比例函數(shù)y=-的圖象在同一直角坐標系內(nèi)有無交點,說明理由.

 

查看答案和解析>>

同步練習冊答案