.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測(cè)試卷-多項(xiàng)式乘以多項(xiàng)式(帶解析) 題型:解答題
小明在進(jìn)行兩個(gè)多項(xiàng)式的乘法運(yùn)算時(shí)(其中的一個(gè)多項(xiàng)式是b﹣1),把“乘以(b﹣1)”錯(cuò)看成“除以(b﹣1)”,結(jié)果得到(2a﹣b),請(qǐng)你幫小明算算,另一個(gè)多項(xiàng)式是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測(cè)試卷-公式法(帶解析) 題型:解答題
閱讀理解
我們知道:多項(xiàng)式a2+6a+9可以寫成(a+3)2的形式,這就是將多項(xiàng)式a2+6a+9因式分解.當(dāng)一個(gè)多項(xiàng)式(如a2+6a+8)不能寫成兩數(shù)和(或差)的平方的形式時(shí),我們通常采用下面的方法:
a2+6a+8=(a+3)2﹣1=(a+2)(a+4).
請(qǐng)仿照上面的方法,將下列各式因式分解:
(1)x2﹣6x﹣27;(2)a2+3a﹣28;(3)x2﹣(2n+1)x+n2+n.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測(cè)試卷-公因式和公式法的綜合運(yùn)用(帶解析) 題型:解答題
因式分解:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測(cè)試卷-平方差公式(帶解析) 題型:解答題
20022﹣20012+20002﹣19992+19982﹣…+22﹣12.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測(cè)試卷-平方差公式(帶解析) 題型:解答題
大家已經(jīng)知道,完全平方公式和平方差公式可以用平面幾何圖形的面積來表示,實(shí)際上還有一些代數(shù)恒等式也可以用這種形式表示,例如:2x(x+y)=2x2+2xy就可以用圖的面積表示.
(1)請(qǐng)寫出圖(2)所表示的代數(shù)恒等式: _______ ;
(2)請(qǐng)寫出圖(3)所表示的代數(shù)恒等式: ________ ;
(3)試畫出一個(gè)幾何圖形,使它的面積能表示(x+y)(x+3y)=x2+4xy+3y2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測(cè)試卷-十字相乘法因式分解(帶解析) 題型:解答題
在因式分解中,有一類形如x2+(m+n)x+mn的多項(xiàng)式,其常數(shù)項(xiàng)是兩個(gè)因數(shù)的積,而它的一次項(xiàng)系數(shù)恰是這兩個(gè)因數(shù)的和,則我們可以把它分解成x2+(m+n)x+mn=(x+m)(x+n).例如:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3).你能運(yùn)用上述方法分解多項(xiàng)式x2﹣5x﹣6嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測(cè)試卷-提公因式法(帶解析) 題型:解答題
(3x+2y+1)2﹣(3x+2y﹣1)(3x+2y+1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測(cè)試卷-因式分解的應(yīng)用(帶解析) 題型:解答題
已知:a為有理數(shù),a3+a2+a+1=0,求1+a+a2+a3+…+a2012的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com