菱形ABCD中,AB=4,高DE垂直平分邊AB,則BD=________,AC=________.

4    4
分析:根據(jù)垂直平分線的性質(zhì)計(jì)算.
解答:解:因?yàn)镈E垂直平分邊AB,
所以BD=AD=4
故△ABD和△DBC為等邊三角形,
由面積公式得:AC×BD=AB×DE,
∴AC=2DE=2×4sin60°=4.BD=4,AC=4
故答案為4,4
點(diǎn)評(píng):根據(jù)線段的垂直平分線上的點(diǎn)到線段的兩個(gè)端點(diǎn)的距離相等,求出DB=4,得到兩個(gè)三角形為等邊三角形,再解直角三角形即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,菱形ABCD中,E、F分別是CD、CB上的點(diǎn),且CE=CF;
(1)求證:△ABE≌△ADF.
(2)若菱形ABCD中,AB=4,∠C=120°,∠EAF=60°,求菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在菱形ABCD中,AB=4,∠BAD=120°,△AEF為正三角形,E、F在菱形邊上.
(1)證明:不論E,F(xiàn)分別在邊BC,CD上如何移動(dòng),總有BE=CF.
(2)在(1)的情況下,即當(dāng)點(diǎn)E,F(xiàn)分別在邊BC,CD上移動(dòng)時(shí),請(qǐng)分別探究四邊形AECF和△CEF的面積是否發(fā)生變化?若不變,求出這個(gè)定值;如果變化,求出其最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在菱形ABCD中,AB=5cm,對(duì)角線AC=8cm,則菱形ABCD的面積等于( 。
A、24cm2B、48cm2C、40cm2D、20cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,菱形ABCD中,AB=5,∠BAD=60°,M是AB的中點(diǎn),P是對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),則PM+PB的最小值等于
5
2
3
5
2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•順義區(qū)一模)如圖,菱形ABCD中,AB=2,∠C=60°,我們把菱形ABCD的對(duì)稱中心稱作菱形的中心.菱形ABCD在直線l上向右作無(wú)滑動(dòng)的翻滾,每繞著一個(gè)頂點(diǎn)旋轉(zhuǎn)60°叫一次操作,則經(jīng)過(guò)1次這樣的操作菱形中心O所經(jīng)過(guò)的路徑長(zhǎng)為
3
3
π
3
3
π
;經(jīng)過(guò)18次這樣的操作菱形中心O所經(jīng)過(guò)的路徑總長(zhǎng)為
(4
3
+2)π
(4
3
+2)π
;經(jīng)過(guò)3n(n為正整數(shù))次這樣的操作菱形中心O所經(jīng)過(guò)的路徑總長(zhǎng)為
2
3
+1
3
2
3
+1
3
.(結(jié)果都保留π)

查看答案和解析>>

同步練習(xí)冊(cè)答案