一組數(shù)據(jù)x1,x2,x3,x4,x5,x6的平均數(shù)是2,方差是5,則2x1+3,2x2+3,2x3+3,2x4+3,2x5+3,2x6+3的平均數(shù)和方差分別是


  1. A.
    2和5
  2. B.
    7和5
  3. C.
    2和13
  4. D.
    7和20
D
分析:根據(jù)平均數(shù),方差的公式進(jìn)行計算.
解答:依題意,得=(x1+x2+x3+x4+x5+x6)=2,∴x1+x2+x3+x4+x5+x6=12,
∴2x1+3,2x2+3,2x3+3,2x4+3,2x5+3,2x6+3的平均數(shù)為
=[(2x1+3)+(2x2+3)+(2x3+3)+(2x4+3)+(2x5+3)+(2x6+3)]=×(2×12+3×6)=7,
∵數(shù)據(jù)x1,x2,x3,x4,x5,x6的方差
S2=[(x1-2)2+(x2-2)2+(x3-2)2+(x4-2)2+(x5-2)2+(x6-2)2]=5,
∴數(shù)據(jù)2x1+3,2x2+3,2x3+3,2x4+3,2x5+3,2x6+3方差
S′2=[(2x1+3-7)2+(2x2+3-7)2+(2x3+3-7)2+(2x4+3-7)2+(2x5+3-7)2+(2x6+3-7)2]
=[(x1-2)2+(x2-2)2+(x3-2)2+(x4-2)2+(x5-2)2+(x6-2)2]×4=5×4=20.
故選D.
點(diǎn)評:本題考查了平均數(shù)、方差的計算.關(guān)鍵是熟悉計算公式,會將所求式子變形,再整體代入.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

設(shè)一組數(shù)據(jù)x1,x2…xn的方差為S2,將每個數(shù)據(jù)都乘以2,則新數(shù)據(jù)的方差為
 
;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•孝感)已知一組數(shù)據(jù)x1,x2,…,xn的方差是s2,則新的一組數(shù)據(jù)ax1+1,ax2+1,…,axn+1(a為常數(shù),a≠0)的方差是
a2s2
a2s2
(用含a,s2的代數(shù)式表示).
(友情提示:s2=
1
n
[(x1-
.
x
2+(x2-
.
x
2+…+(xn-
.
x
2])

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一組數(shù)據(jù)x1,x2,…xa的每一個數(shù)都加上同一數(shù)a(a≠0),得到一組新數(shù)據(jù)x1+a,x2+a,…xa+a,則這組新數(shù)據(jù)(與原數(shù)據(jù)相比)(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一組數(shù)據(jù)x1,x2,…,xn的方差為S2,那么數(shù)據(jù)kx1-5,kx2-5,…,kxn-5的方差為
k2S2
k2S2
.標(biāo)準(zhǔn)差為
ks
ks

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在一組數(shù)據(jù)x1,x2,xn中,各數(shù)據(jù)與它們的平均數(shù)
.
x
的差的絕對值的平均數(shù),記作T=
1
n
(|x1-
.
x
|+|x2-
.
x
|+…+|xn-
.
x
|)
叫做這組數(shù)據(jù)的“平均差”.一組數(shù)據(jù)的平均差越大,就說明這組數(shù)據(jù)的離散程度越大.則樣本:1、2、3、4、5 的平均差是( 。

查看答案和解析>>

同步練習(xí)冊答案