已知a、b是正實數(shù),那么,是恒成立的.

(1)(3分)由恒成立,說明恒成立;

(2)(3分)填空:已知a、b、c是正實數(shù),由恒成立,猜測:     ▲    也恒成立;

(3)(2分)如圖,已知AB是直徑,點P是弧上異于點A和點B的一點,PC⊥AB,垂足為C,AC=a,BC=b,由此圖說明恒成立.

 

【答案】

(1)見解析(2)(3)見解析

【解析】解:(1)由得,

∴于是 ,即。

(2)。

(3)連接OP。

∵AB是直徑,∴∠APB=90°。

又∵PC⊥AB,∴Rt△APC∽Rt△PBC。

,即,∴

又∵PO=,由垂線段最短,得PO≥PC,即。

(1)由,利用完全平方公式,即可證得恒成立。

(2)設(shè)x≥0,y≥0,z≥0,

,即

,得

(3)首先證得Rt△APC∽Rt△PBC,由相似三角形的對應(yīng)邊成比例,可求得PC的值,又由OP是半徑,可求得OP=,然后由點到線的距離垂線段最短,即可證得恒成立。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•資陽)已知a、b是正實數(shù),那么,
a+b
2
ab
是恒成立的.
(1)由(
a
-
b
)2≥0
恒成立,說明
a+b
2
ab
恒成立;
(2)填空:已知a、b、c是正實數(shù),由
a+b
2
ab
恒成立,猜測:
a+b+c
3
3abc
3abc
也恒成立;
(3)如圖,已知AB是直徑,點P是弧上異于點A和點B的一點,PC⊥AB,垂足為C,AC=a,BC=b,由此圖說明
a+b
2
ab
恒成立.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知a,b是正實數(shù),
a+b
2
ab
是恒成立的.
(1)由(
a
-
b
2≥0恒成立,說明
a+b
2
ab
是恒成立;
(2)如圖,在⊙O中,AB是直徑,C是圓上異于點A和點B的點,過點C作CD⊥AB,垂足為點D,連接AC,BC,設(shè)AD=a,BD=b,根據(jù)圖說明
a+b
2
ab
是恒成立.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(四川資陽卷)數(shù)學(xué)(帶解析) 題型:解答題

已知a、b是正實數(shù),那么,是恒成立的.
(1)(3分)由恒成立,說明恒成立;
(2)(3分)填空:已知a、b、c是正實數(shù),由恒成立,猜測:     ▲   也恒成立;
(3)(2分)如圖,已知AB是直徑,點P是弧上異于點A和點B的一點,PC⊥AB,垂足為C,AC=a,BC=b,由此圖說明恒成立.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知a、b是正實數(shù),那么,數(shù)學(xué)公式是恒成立的.
(1)由數(shù)學(xué)公式恒成立,說明數(shù)學(xué)公式恒成立;
(2)填空:已知a、b、c是正實數(shù),由數(shù)學(xué)公式恒成立,猜測:數(shù)學(xué)公式______也恒成立;
(3)如圖,已知AB是直徑,點P是弧上異于點A和點B的一點,PC⊥AB,垂足為C,AC=a,BC=b,由此圖說明數(shù)學(xué)公式恒成立.

查看答案和解析>>

同步練習(xí)冊答案