23、已知:如圖,在平行四邊形ABCD中,AM=DM,
求證:(1)AE=AB;
(2)如果BM平分∠ABC,求證:BM⊥CE.
分析:(1)根據(jù)平行四邊形的對邊相等且平行,可得AB∥CD,AB=CD,根據(jù)平行線的性質(zhì)可得:∠E=∠ECD,又因為AM=DM,∠AME=∠DMC,可證得△AEM≌△DCM,即可證得AE=AB;
(2)由AD∥BC,可得∠AMB=∠MBC,又因為BM平分∠ABC,可得∠AMB=∠ABM,即可得AB=AM,因為AE=AB,所以AB=AM=AE,易得∠BME=90°,即可證得BM⊥CE.
解答:證明:(1)∵四邊形ABCD是平行四邊形,
∴AB=CD,AB∥CD,
∴∠E=∠ECD,
又∵AM=DM,∠AME=∠DMC,
∴△AEM≌△DCM,
∴CD=AE,
∴AE=AB;
(2)∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴∠AMB=∠MBC,
∵BM平分∠ABC,
∴∠ABM=∠MBC,
∴∠ABM=∠AMB,
∴AB=AM,
∵AB=AE,
∴AM=AE,
∴∠E=∠AME,
∵∠E+∠EBM+∠BMA+∠AME=180°,
∴∠BME=90°,
即BM⊥CE.
點評:此題考查了平行四邊形的判定:平行四邊形的對邊平行且相等.還考查了等腰三角形的判定與性質(zhì).解此題時要注意當有平行線與角平分線出現(xiàn)時,一般會出現(xiàn)等腰三角形.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABC0中,已知點A、C兩點的坐標為A(
5
,
5
),C(2
5
,0).
(1)求點B的坐標.
(2)將平行四邊形ABCO向左平移
5
個單位長度,求所得四邊形A′B′C′O′四個頂點的坐標.
(3)求平行四邊形ABCO的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)已知:如圖1,在△ABC中,∠ACB=90°,CD⊥AB于點D,點E在AC上,CE=BC,過E點作AC的垂線,交CD的延長線于點F.求證:AB=FC.
(2)如圖2,已知△ABC的三個頂點的坐標分別為A(-2,3)、B(-6,0)、C(-1,0).
(1)請直接寫出點A關(guān)于y軸對稱的點的坐標;
(2)將△ABC繞坐標原點O逆時針旋轉(zhuǎn)90°.畫出圖形,直接寫出點B的對應(yīng)點的坐標;
(3)請直接寫出:以A、B、C為頂點的平行四邊形的第四個頂點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•南平模擬)如圖,已知四邊形ABCD.請在下列四個關(guān)系中,選出兩個恰當?shù)年P(guān)系作為條件,推出四邊形ABCD是平行四邊形,并予證明.
關(guān)系:①AD∥BC;②AB=CD;③∠B+∠C=180°;④∠A=∠C.
已知:在四邊形ABCD中,
,
.(填序號,寫出一種情況即可)  
求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平行四邊形OABC中,已知點A、C兩點的坐標為A (
3
,
3
),C(2
3
,0).
(1)填空:點B的坐標是
(3
3
,
3
(3
3
,
3

(2)將平行四邊形OABC向左平移
3
個單位長度,求所得四邊形A′B′C′O′四個頂點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在平面直角坐標系xOy中,直線AB與x軸、y軸的交點分別為A、B,OB=3,,將∠OBA對折,使點O的對應(yīng)點H恰好落在直線AB上,折痕交x軸于點C,

(1)求過A、B、C三點的拋物線解析式;

(2)若拋物線的頂點為D,在直線BC上是否存在點P,使得四邊形ODAP為平行四

邊形?若存在,求出點P的坐標;若不存在,說明理由;

(3)若點Q是拋物線上一個動點,使得以A、B、Q為頂點并且以AB為直角邊的直角三角形,直角寫出Q點坐標。

查看答案和解析>>

同步練習冊答案