【題目】已知等邊△ABC中,點(diǎn)D,E分別在邊AB,BC上,把△BDE沿直線DE翻折,使點(diǎn)B落在點(diǎn)Bˊ處,DBˊ,EBˊ分別交邊AC于點(diǎn)F,G,若∠ADF=80°,則∠EGC的度數(shù)為
【答案】80°
【解析】解:由翻折可得∠B′=∠B=60°,
∴∠A=∠B′=60°,
∵∠AFD=∠GFB′,
∴△ADF∽△B′GF,
∴∠ADF=∠B′GF,
∵∠EGC=∠FGB′,
∴∠EGC=∠ADF=80°.
所以答案是:80°.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等邊三角形的性質(zhì)的相關(guān)知識,掌握等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°,以及對翻折變換(折疊問題)的理解,了解折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把面積為a的正三角形ABC的各邊依次循環(huán)延長一倍,順次連接這三條線段的外端點(diǎn),這樣操作后,可以得到一個(gè)新的正三角形DEF;對新三角形重復(fù)上述過程,經(jīng)過2016次操作后,所得正三角形的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形EFGH是矩形ABCD的內(nèi)接矩形,且EF:FG=3:1,AB:BC=2:1,則tan∠AHE的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.將△ABC繞直角頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°得△A′B′C′,則點(diǎn)B轉(zhuǎn)過的路徑長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料
如圖①,△ABC與△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且點(diǎn)D在AB邊上,AB,EF的中點(diǎn)均為O,連結(jié)BF,CD、CO,顯然點(diǎn)C,F(xiàn),O在同一條直線上,可以證明△BOF≌△COD,則BF=CD.
解決問題
(1)將圖①中的Rt△DEF繞點(diǎn)O旋轉(zhuǎn)得到圖②,猜想此時(shí)線段BF與CD的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)如圖③,若△ABC與△DEF都是等邊三角形,AB、EF的中點(diǎn)均為O,上述(1)中的結(jié)論仍然成立嗎?如果成立,請說明理由;如不成立,請求出BF與CD之間的數(shù)量關(guān)系;
(3)如圖④,若△ABC與△DEF都是等腰三角形,AB,EF的中點(diǎn)均為0,且頂角∠ACB=∠EDF=α,請直接寫出 的值(用含α的式子表示出來)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在方格紙中,每個(gè)小正方形的邊長均為1個(gè)單位長度有一個(gè)△ABC,它的三個(gè)頂點(diǎn)均與小正方形的頂點(diǎn)重合.
(1)將△ABC向右平移3個(gè)單位長度,得到△DEF(A與D、B與E、C與F對應(yīng)),請?jiān)诜礁窦堉挟嫵觥鱀EF;
(2)在(1)的條件下,連接AE和CE,請直接寫出△ACE的面積S,并判斷B是否在邊AE上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABD中,AB=4cm,AD=6cm,AF平分∠BAD,點(diǎn)C在AD上,BC⊥AF于點(diǎn)F.若點(diǎn)E是BD的中點(diǎn),則EF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,正六邊形ABCDEF在直角坐標(biāo)系內(nèi)的位置如圖所示,A(﹣2,0),點(diǎn)B在原點(diǎn),把正六邊形ABCDEF沿x軸正半軸作無滑動(dòng)的連續(xù)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,經(jīng)過2015次翻轉(zhuǎn)之后,點(diǎn)B的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A在y軸上,點(diǎn)B的坐標(biāo)為(1,2),將△AOB沿x軸向右平移得到△A′O′B′,點(diǎn)B的對應(yīng)點(diǎn)B′恰好在函數(shù)y= (x>0)的圖象上,此時(shí)點(diǎn)A移動(dòng)的距離為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com