(2005•河南)如圖,梯形ABCD中,AD∥BC,AB=DC,P為梯形ABCD外一點(diǎn),PA、PD分別交線段BC于點(diǎn)E、F,且PA=PD.
(1)寫出圖中三對(duì)你認(rèn)為全等的三角形(不再添加輔助線);
(2)選擇你在(1)中寫出的全等三角形中的任意一對(duì)進(jìn)行證明.

【答案】分析:(1)按照全等三角形的判定有規(guī)律的去找圖中的全等三角形.
(2)題中知道AB=DC,PA=PD都屬于△ABP和△DCP,關(guān)鍵是找出∠BAP=∠CDP從而說明三角形全等.
解答:解:(1)①△ABP≌△DCP;②△ABE≌△DCF;③△BEP≌△CFP;④△BFP≌△CEP;

(2)下面就△ABP≌△DCP給出參考答案.
證明:∵AD∥BC,AB=DC,
∴梯形ABCD為等腰梯形;
∴∠BAD=∠CDA;
又∵PA=PD,
∴∠PAD=∠PDA,∴∠BAD-∠PAD=∠CDA-∠PDA;
即∠BAP=∠CDP
在△ABP和△DCP中

∴△ABP≌△DCP.
點(diǎn)評(píng):本題主要考查全等三角形的判定,找三角形全等應(yīng)有規(guī)律的去找,先找單個(gè)的全等三角形,再找由2部分或2部分以上組成全等的三角形.然后再選擇合適的三角形全等的判定方法,看缺什么條件,再去證什么條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(05)(解析版) 題型:解答題

(2005•河南)如圖1,Rt△ABC中,∠C=90°,AC=12,BC=5,點(diǎn)M在邊AB上,且AM=6.
(1)動(dòng)點(diǎn)D在邊AC上運(yùn)動(dòng),且與點(diǎn)A,C均不重合,設(shè)CD=x.
①設(shè)△ABC與△ADM的面積之比為y,求y與x之間的函數(shù)關(guān)系式(寫出自變量的取值范圍);
②當(dāng)x取何值時(shí),△ADM是等腰三角形?寫出你的理由.
(2)如圖2,以圖1中的為一組鄰邊的矩形中,動(dòng)點(diǎn)在矩形邊上運(yùn)動(dòng)一周,能使是M為頂角的等腰三角形共有多少個(gè)?(直接寫結(jié)果,不要求說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年河南省中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:選擇題

(2005•河南)如圖,若將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°后得到△A′B′C′,則A點(diǎn)的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是( )

A.(-3,-2)
B.(2,2)
C.(3,0)
D.(2,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年河南省中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2005•河南)如圖1,Rt△ABC中,∠C=90°,AC=12,BC=5,點(diǎn)M在邊AB上,且AM=6.
(1)動(dòng)點(diǎn)D在邊AC上運(yùn)動(dòng),且與點(diǎn)A,C均不重合,設(shè)CD=x.
①設(shè)△ABC與△ADM的面積之比為y,求y與x之間的函數(shù)關(guān)系式(寫出自變量的取值范圍);
②當(dāng)x取何值時(shí),△ADM是等腰三角形?寫出你的理由.
(2)如圖2,以圖1中的為一組鄰邊的矩形中,動(dòng)點(diǎn)在矩形邊上運(yùn)動(dòng)一周,能使是M為頂角的等腰三角形共有多少個(gè)?(直接寫結(jié)果,不要求說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年河南省中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:選擇題

(2005•河南)如圖,tanα等于( )

A.
B.2
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案