如圖,∠ABD,∠ACD的角平分線交于點(diǎn)P,若∠A=70°,∠D=10°,則∠P的度數(shù)為
 
考點(diǎn):三角形內(nèi)角和定理
專題:
分析:延長(zhǎng)PC交BD于E,根據(jù)角平分線的定義可得∠1=∠2,∠3=∠4,再根據(jù)三角形的內(nèi)角和定理可得∠A+∠1=∠P+∠3,然后根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和表示出∠5,整理可得∠P=
1
2
(∠A-∠D),然后代入數(shù)據(jù)計(jì)算即可得解.
解答:解:如圖,延長(zhǎng)PC交BD于E,
∵∠ABD,∠ACD的角平分線交于點(diǎn)P,
∴∠1=∠2,∠3=∠4,
由三角形的內(nèi)角和定理得,∠A+∠1=∠P+∠3①,
在△PBE中,∠5=∠2+∠P,
在△BCE中,∠5=∠4-∠D,
∴∠2+∠P=∠4-∠D②,
①-②得,∠A-∠P=∠P+∠D,
∴∠P=
1
2
(∠A-∠D),
∵∠A=70°,∠D=10°,
∴∠P=
1
2
(70°-10°)=30°.
故答案為:30°.
點(diǎn)評(píng):本題考查了三角形的內(nèi)角和定理,三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和的性質(zhì),熟記性質(zhì)并作輔助線然后整理出∠A、∠D、∠P三者之間的關(guān)系式是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)y=ax2+bx+3的圖象過點(diǎn)A(-1,0),對(duì)稱軸為過點(diǎn)(1,0)且與y軸平行的直線.
(1)求點(diǎn)B的坐標(biāo);
(2)求該二次函數(shù)的關(guān)系式;
(3)結(jié)合圖象,解答下列問題:
①當(dāng)x取什么值時(shí),該函數(shù)的圖象在x軸上方?
②當(dāng)-1<x<2時(shí),求函數(shù)y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

為了了解初三畢業(yè)學(xué)生一分鐘跳繩次數(shù)的情況,某校抽取一部分初三畢業(yè)生行一分鐘跳繩次數(shù)的測(cè)試,將所得的數(shù)據(jù)進(jìn)行處理,可得頻率分布表.
(1)在這個(gè)問題中,總體是
 
;
(2)b=
 
,e=
 
;
(3)若次數(shù)在110次(含110次)以上為達(dá)標(biāo),試估計(jì)該校初三畢業(yè)一分鐘跳繩的達(dá)標(biāo)率為
 

組別 分   組 頻數(shù) 頻率
1 89.5~99.5 4 0.04
2 99.5~109.5 3 0.03
3 109.5~119.5 46 0.46
4 119.5~129.5 b e
5 129.5~139.5 6 0.06
6 139.5~149.5 2 0.02
合    計(jì) a 1.00

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AE=AC,∠E=∠C=100°,ED=BC,∠D=35°,∠CAD=10°.則∠BAE=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

多項(xiàng)式3a2-
ab2
2
-5
 
 
項(xiàng)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若等腰梯形兩底之差等于一腰的長(zhǎng),那么這個(gè)梯形的內(nèi)角度數(shù)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一元二次方程x2+kx-6=0的一個(gè)根是2,則另一個(gè)根是
 
,k=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

比-5大3的數(shù)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計(jì)算:3
3
-2
3
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案