(本題14分)如圖,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,動點(diǎn)P從點(diǎn)C出發(fā)沿CD方向向點(diǎn)D運(yùn)動,動點(diǎn)Q同時以相同速度從點(diǎn)D出發(fā)沿DA方向向終點(diǎn)A運(yùn)動,其中一個動點(diǎn)到達(dá)端點(diǎn)時,另一個動點(diǎn)也隨之停止運(yùn)動.

(1)求AD的長;

(2)設(shè)CP=x,△PDQ的面積為y,求y關(guān)于x的函數(shù)表達(dá)式, 并求自變量的取值范圍;

(3)探究:在BC邊上是否存在點(diǎn)M使得四邊形PDQM是菱形?若存在,請找出點(diǎn)M,并求出BM的長;不存在,請說明理由.

 

 

 

      

 

 

 

 

 

 

(1)∵AD關(guān)于點(diǎn)Q成中心對稱,HQAB

=90°,HD=HA,

,…………………………………………………………………………2分

∴△DHQ∽△ABC……………………………………………………………………1分

 

 

 

 

 

 

 

(2)①如圖1,當(dāng)時,

ED=,QH=,

此時.…………………………………………2分

②如圖2,當(dāng)時,

ED=,QH=,

此時.…………………………………………2分

yx之間的函數(shù)解析式為(自變量取值寫對給1分)

(3)①如圖1,當(dāng)時,

DE=DH,∵DH=AH=, DE=,

=.……………………………………………………1分

顯然ED=EH,HD=HE不可能;……………………………………………………1分

②如圖2,當(dāng)時,

DE=DH,=,;   …………………………………………1分

HD=HE,此時點(diǎn)DE分別與點(diǎn)B,A重合,;  ………………………1分

ED=EH,則△EDH∽△HDA

,,.   ……………………………………2分

∴當(dāng)x的值為時,△HDE是等腰三角形.

(其他解法相應(yīng)給分)

 

 

 

 

 

 

 解析:略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本題14分)如圖,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點(diǎn).

(1)求正比例函數(shù)和反比例函數(shù)的解析式;

(2)把直線OA向下平移后與反比例函數(shù)的圖象交于點(diǎn),求的值和這個一次函數(shù)的解析式;

(3)第(2)問中的一次函數(shù)的圖象與軸、軸分別交于C、D,求過AB、D三點(diǎn)的二次函數(shù)的解析式;

(4)在第(3)問的條件下,二次函數(shù)的圖象上是否存在點(diǎn)E,使的面積的面積S滿足:?若存在,求點(diǎn)E的坐標(biāo);若不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題14分)如圖,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,動點(diǎn)P從點(diǎn)C出發(fā)沿CD方向向點(diǎn)D運(yùn)動,動點(diǎn)Q同時以相同速度從點(diǎn)D出發(fā)沿DA方向向終點(diǎn)A運(yùn)動,其中一個動點(diǎn)到達(dá)端點(diǎn)時,另一個動點(diǎn)也隨之停止運(yùn)動.
(1)求AD的長;
(2)設(shè)CP=x, △PDQ的面積為y,求y關(guān)于x的函數(shù)表達(dá)式,并求自變量的取值范圍;
(3)探究:在BC邊上是否存在點(diǎn)M使得四邊形PDQM是菱形?若存在,請找出點(diǎn)M,并求出BM的長;不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011屆上海市黃浦區(qū)數(shù)學(xué)學(xué)業(yè)考試模擬試卷 題型:解答題

(本題14分)如圖11,在△ABC中,∠ACB=,AC=BC=2,M是邊AC的中點(diǎn),
CH⊥BM于H.

(1)試求sin∠MCH的值;
(2)求證:∠ABM=∠CAH;
(3)若D是邊AB上的點(diǎn),且使△AHD為等腰三角形,請直接寫出AD的長為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年浙江省仙巖二中九年級數(shù)學(xué)模擬試題數(shù)學(xué)卷 題型:解答題

(本題14分)如圖,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,動點(diǎn)P從點(diǎn)C出發(fā)沿CD方向向點(diǎn)D運(yùn)動,動點(diǎn)Q同時以相同速度從點(diǎn)D出發(fā)沿DA方向向終點(diǎn)A運(yùn)動,其中一個動點(diǎn)到達(dá)端點(diǎn)時,另一個動點(diǎn)也隨之停止運(yùn)動.
(1)求AD的長;
(2)設(shè)CP=x, △PDQ的面積為y,求y關(guān)于x的函數(shù)表達(dá)式,并求自變量的取值范圍;
(3)探究:在BC邊上是否存在點(diǎn)M使得四邊形PDQM是菱形?若存在,請找出點(diǎn)M,并求出BM的長;不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省宿遷市)九年級第二次聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

(本題14分)如圖,AB為⊙O的直徑,AC為⊙O的弦,AD平分∠BAC,交⊙O于點(diǎn)D,DEAC,交AC的延長線于點(diǎn)E

(1)判斷直線DE與⊙O的位置關(guān)系,并說明理由;

(2)若AE=8,⊙O的半徑為5,求DE的長.

 

查看答案和解析>>

同步練習(xí)冊答案