【題目】某數(shù)學(xué)小組用高為1.2米的儀器測量一教學(xué)樓的高CD,如圖,距CD一定距離的A處,用儀器測得教學(xué)樓頂部D的仰角為β,再在A與C之間選一點(diǎn)B,由B處測出教學(xué)樓頂部D的仰角為α,測得A,B之間的距離為4米,若tanα=1.6,tanβ=1.2,則他們能求出教學(xué)樓的高嗎?

【答案】解:設(shè)DG=x米,
tanα= ,
FG= = x,
tanβ= ,
GE= = x,
由題意得,GE﹣GF=4,即 x﹣ x=4,
解得x=19.2,
則DC=DG+GC=19.2+1.2=20.4(米).
答:教學(xué)樓的高為20.4米
【解析】設(shè)DG=x米,利用正切的定義分別用x表示出FG、EG,根據(jù)題意求出x,結(jié)合圖形計(jì)算即可.
【考點(diǎn)精析】利用關(guān)于仰角俯角問題對題目進(jìn)行判斷即可得到答案,需要熟知仰角:視線在水平線上方的角;俯角:視線在水平線下方的角.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的材料:
如果函數(shù)y=f(x)滿足:對于自變量x的取值范圍內(nèi)的任意x1 , x2 ,
① 若x1<x2 , 都有f(x1)<f(x2),則稱f(x)是增函數(shù);
②若x1<x2 , 都有f(x1)>f(x2),則稱f(x)是減函數(shù).
例題:證明函數(shù)f(x)= (x>0)是減函數(shù).
證明:假設(shè)x1<x2 , 且x1>0,x2>0
f(x1)﹣f(x2)= = =
∵x1<x2 , 且x1>0,x2>0
∴x2﹣x1>0,x1x2>0
>0,即f(x1)﹣f(x2)>0
∴f(x1)>f(x2
∴函數(shù)f(x)= (x>0)是減函數(shù).
根據(jù)以上材料,解答下面的問題:
(1)函數(shù)f(x)= (x>0),f(1)= =1,f(2)= =
計(jì)算:f(3)= , f(4)= , 猜想f(x)= (x>0)是函數(shù)(填“增”或“減”);
(2)請仿照材料中的例題證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A,B,C,D,E,F(xiàn)分別是⊙O上的六等分點(diǎn),⊙O的半徑是100,在這六點(diǎn)間修建互通的道路(即圖中實(shí)線部分為道路),現(xiàn)有如下兩種方案.方案一:如圖1,各條線段長度均相等,記圖中道路長為l1;方案二:如圖2,AQ=BG=CH=DM=EN=FP,點(diǎn)G,H,M,N,P,Q分別是線段AQ,BG,CH,DM,EN,F(xiàn)P的中點(diǎn),六邊形GHMNPQ是以O(shè)為中心的正六邊形,記圖中道路長為l2;則l1= ;l2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形EFGH是矩形ABCD的內(nèi)接矩形,且EF:FG=3:1,AB:BC=2:1,則tan∠AHE的值為(

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=﹣ x+3與兩坐標(biāo)軸分別相交于A,B兩點(diǎn),若點(diǎn)P,Q分別是線段AB,OB上的動(dòng)點(diǎn),且點(diǎn)P不與A,B重合,點(diǎn)Q不與O,B重合.
(1)若OP⊥AB于點(diǎn)P,△OPQ為等腰三角形,這時(shí)滿足條件的點(diǎn)Q有幾個(gè)?請直接寫出相應(yīng)的OQ的長;
(2)當(dāng)點(diǎn)P是AB的中點(diǎn)時(shí),若△OPQ與△ABO相似,這時(shí)滿足條件的點(diǎn)Q有幾個(gè)?請分別求出相應(yīng)的OQ的長;
(3)試探究是否存在以點(diǎn)P為直角頂點(diǎn)的Rt△OPQ?若存在,求出相應(yīng)的OQ的范圍,并求出OQ取最小值時(shí)點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.將△ABC繞直角頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°得△A′B′C′,則點(diǎn)B轉(zhuǎn)過的路徑長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料

如圖①,△ABC與△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且點(diǎn)D在AB邊上,AB,EF的中點(diǎn)均為O,連結(jié)BF,CD、CO,顯然點(diǎn)C,F(xiàn),O在同一條直線上,可以證明△BOF≌△COD,則BF=CD.
解決問題
(1)將圖①中的Rt△DEF繞點(diǎn)O旋轉(zhuǎn)得到圖②,猜想此時(shí)線段BF與CD的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)如圖③,若△ABC與△DEF都是等邊三角形,AB、EF的中點(diǎn)均為O,上述(1)中的結(jié)論仍然成立嗎?如果成立,請說明理由;如不成立,請求出BF與CD之間的數(shù)量關(guān)系;

(3)如圖④,若△ABC與△DEF都是等腰三角形,AB,EF的中點(diǎn)均為0,且頂角∠ACB=∠EDF=α,請直接寫出 的值(用含α的式子表示出來)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABD中,AB=4cm,AD=6cm,AF平分∠BAD,點(diǎn)C在AD上,BC⊥AF于點(diǎn)F.若點(diǎn)E是BD的中點(diǎn),則EF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△A1A2A3 , △A3A4A5 , △A5A6A7 , △A7A8A9 , …,都是等邊三角形,且點(diǎn)A1 , A3 , A5 , A7 , A9的坐標(biāo)分別為A1(3,0),A3(1,0),A5(4,0),A7(0,0),A9(5,0),依據(jù)圖形所反映的規(guī)律,則A100的坐標(biāo)為

查看答案和解析>>

同步練習(xí)冊答案