【題目】數(shù)學(xué)實(shí)踐課中:一張紙片,第一次將其撕成四小片,以后每次都將其中一片撕成更小的四片,如此進(jìn)行下去,撕到第2次手中共有7張紙片,問(wèn)撕到第4次時(shí),手中共有_____張,撕到第n次時(shí),手中共有_________________(用含有n的代數(shù)式表示)張.
【答案】13 3n+1
【解析】
分別數(shù)出三個(gè)圖形中正方形的個(gè)數(shù),第二個(gè)和第三個(gè)圖形中正方形的個(gè)數(shù)就是分別撕了一次和兩次后手中紙的張數(shù).撕了幾次后,手中紙的張數(shù)等于3與幾的乘積加1.如當(dāng)撕了2次時(shí),手中有7張紙=3×2+1;由此可得,撕了4次時(shí),手中有3×4+1=13張紙;設(shè)撕的次數(shù)為n,紙的張數(shù)為s,按照(1)中的規(guī)律即可得出答案.
解:從圖中可以看出,當(dāng)撕了1次時(shí),手中有4張紙=3×1+1;
當(dāng)撕了2次時(shí),手中有7張紙=3×2+1;
當(dāng)撕了3次時(shí),手中有10張紙=3×3+1;
…
可以發(fā)現(xiàn):撕了幾次后,手中紙的張數(shù)等于3與幾的乘積加1.
所以,當(dāng)撕了4次時(shí),手中有3×4+1=13張紙.
設(shè)撕的次數(shù)為n,紙的張數(shù)為s,按照規(guī)律可得:s=3n+1.
故答案為:13;3n+1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形一條對(duì)角線所在直線上的點(diǎn),如果到這條對(duì)角線的兩端點(diǎn)的距離不相等,但到另一對(duì)角線的兩個(gè)端點(diǎn)的距離相等,則稱這點(diǎn)為這個(gè)四邊形的準(zhǔn)等距點(diǎn).如圖1,點(diǎn)P為四邊形ABCD對(duì)角線AC所在直線上的一點(diǎn),PD=PB,PA≠PC,則點(diǎn)P為四邊形ABCD的準(zhǔn)等距點(diǎn).
(1)如圖2,畫(huà)出菱形ABCD的一個(gè)準(zhǔn)等距點(diǎn).
(2)如圖3,在四邊形ABCD中,P是AC上的點(diǎn),PA≠PC,延長(zhǎng)BP交CD于點(diǎn)E,延長(zhǎng)DP交BC于點(diǎn)F,且∠CDF=∠CBE,CE=CF.求證:點(diǎn)P是四邊形ABCD的準(zhǔn)等距點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,,若點(diǎn)P是邊AB上的一個(gè)動(dòng)點(diǎn),以每秒3個(gè)單位的速度按照從運(yùn)動(dòng),同時(shí)點(diǎn)Q從以每秒1個(gè)單位的速度運(yùn)動(dòng),當(dāng)一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng)。在運(yùn)動(dòng)過(guò)程中,設(shè)運(yùn)動(dòng)時(shí)間為t,若為直角三角形,則t的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】八年級(jí)(1)班張山同學(xué)利用所學(xué)函數(shù)知識(shí),對(duì)函數(shù)進(jìn)行了如下研究:
列表如下:
x | … | 0 | 1 | 2 | 3 | … | |||||
y | … | 7 | 5 | 3 | m | 1 | n | 1 | 1 | 1 | … |
描點(diǎn)并連線(如下圖)
(1)自變量x的取值范圍是________;
(2)表格中:________,________;
(3)在給出的坐標(biāo)系中畫(huà)出函數(shù)的圖象;
(4)一次函數(shù)的圖象與函數(shù)的圖象交點(diǎn)的坐標(biāo)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一副三角板ABC和三角板BDE(∠ACB=∠DBE=90°,∠ABC=60°)按不同的位置擺放.
(1)如圖1,若邊BD,BA在同一直線上,則∠EBC= ;
(2)如圖2,若∠EBC=165°,那么∠ABD= ;
(3)如圖3,若∠EBC=120°,求∠ABD的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)M(﹣3,m)是一次函數(shù)y=x+1與反比例函數(shù)y=(k≠0)的圖象的一個(gè)交點(diǎn).
(1)求反比例函數(shù)表達(dá)式;
(2)點(diǎn)P是x軸正半軸上的一個(gè)動(dòng)點(diǎn),設(shè)OP=a(a≠2),過(guò)點(diǎn)P作垂直于x軸的直線,分別交一次函數(shù),反比例函數(shù)的圖象于點(diǎn)A,B,過(guò)OP的中點(diǎn)Q作x軸的垂線,交反比例函數(shù)的圖象于點(diǎn)C,△ABC′與△ABC關(guān)于直線AB對(duì)稱.
①當(dāng)a=4時(shí),求△ABC′的面積;
②當(dāng)a的值為 時(shí),△AMC與△AMC′的面積相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店第一次用300元購(gòu)進(jìn)筆記本若干,第二次又用300元購(gòu)進(jìn)該款筆記本,但這次每本的進(jìn)價(jià)是第一次進(jìn)價(jià)的倍,購(gòu)進(jìn)數(shù)量比第一次少了25本.
(1)求第一次每本筆記本的進(jìn)價(jià)是多少元?
(2)若要求這兩次購(gòu)進(jìn)的筆記本按同一價(jià)格全部銷(xiāo)售完畢后獲利不低于450元,問(wèn)每本筆記本的售價(jià)至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了促進(jìn)全民健身運(yùn)動(dòng)的開(kāi)展,某市組織了一次足球比賽,下表記錄了比賽過(guò)程中部分代表隊(duì)的積分情況.
代表隊(duì) | 場(chǎng)次(場(chǎng)) | 勝(場(chǎng)) | 平(場(chǎng)) | 負(fù)(場(chǎng)) | 積分(分) |
6 | 5 | 1 | 0 | 16 | |
6 | 6 | 0 | 0 | 18 | |
6 | 3 | 2 | 1 | 11 | |
6 | 3 | 1 | 2 | 10 |
(1)本次比賽中,勝一場(chǎng)積______分;
(2)參加此次比賽的代表隊(duì)完成10場(chǎng)比賽后,只輸了一場(chǎng),積分是23分,請(qǐng)你求出代表隊(duì)勝出的場(chǎng)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),共享汽車(chē)的出現(xiàn)給人們的出行帶來(lái)了便利,一輛型共享汽車(chē)的先期成本為8萬(wàn)元,如圖是其運(yùn)營(yíng)收入(元)與運(yùn)營(yíng)支出(元)關(guān)于運(yùn)營(yíng)時(shí)間(月)的函數(shù)圖象.其中,一輛型共享汽車(chē)的盈利(元)關(guān)于運(yùn)營(yíng)時(shí)間(月)的函數(shù)解析式為
(1)根據(jù)以上信息填空:與的函數(shù)關(guān)系式為_________________;
(2)經(jīng)測(cè)試,當(dāng),共享汽車(chē)在這個(gè)范圍內(nèi)運(yùn)營(yíng)相對(duì)安全及效益較好,求當(dāng),一輛型共享汽車(chē)的盈利(元)關(guān)于運(yùn)營(yíng)時(shí)間(月)的函數(shù)關(guān)系式;(注:一輛共享汽車(chē)的盈利=運(yùn)營(yíng)收入-運(yùn)營(yíng)支出-先期成本)
(3)某運(yùn)營(yíng)公司有型,型兩種共享汽車(chē),請(qǐng)分析一輛型和一輛型汽車(chē)哪個(gè)盈利高;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com