如圖①,二次函數(shù)的拋物線(xiàn)的頂點(diǎn)坐標(biāo)C,與x軸的交于A(1,0)、B(-3,0)兩點(diǎn),與y軸交于點(diǎn)D(0,3).

(1)求這個(gè)拋物線(xiàn)的解析式;
(2)如圖②,過(guò)點(diǎn)A的直線(xiàn)與拋物線(xiàn)交于點(diǎn)E,交y軸于點(diǎn)F,其中點(diǎn)E的橫坐標(biāo)為-2,若直線(xiàn)PQ為拋物線(xiàn)的對(duì)稱(chēng)軸,點(diǎn)G為直線(xiàn)PQ上的一動(dòng)點(diǎn),則x軸上是否存在一點(diǎn)H,使D、G、H、F四點(diǎn)所圍成的四邊形周長(zhǎng)最。咳舸嬖,求出這個(gè)最小值及點(diǎn)G、H的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)如圖③,連接AC交y軸于M,在x軸上是否存在點(diǎn)P,使以P、C、M為頂點(diǎn)的三角形與△AOM相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
分析:(1)直接利用三點(diǎn)式求出二次函數(shù)的解析式;
(2)若四邊形DFHG的周長(zhǎng)最小,應(yīng)將邊長(zhǎng)進(jìn)行轉(zhuǎn)換,利用對(duì)稱(chēng)性,要使四邊形DFHG的周長(zhǎng)最小,由于DF是一個(gè)定值,只要使DG+GH+HI最小即可.由圖形的對(duì)稱(chēng)性可知,HF=HI,GD=GE,DG+GH+HF=EG+GH+HI
只有當(dāng)EI為一條直線(xiàn)時(shí),EG+GH+HI最小,即|EI|=
(-2-0)2+(3+1)2
=
22+42
=2
5
,DF+EI=2+2
5

即邊形DFHG的周長(zhǎng)最小為2+2
5

(3)要使△AOM與△PCM相似,只要使△PCM為直角三角形,且兩直角邊之比為1:2即可,設(shè)P(a,0),CM=
22+12
=
5
,且∠CPM不可能為90°時(shí),因此可分兩種情況討論,①當(dāng)∠CMP=90°時(shí),CM=
22+12
=
5
,若
CM
PM
=
1
2
,則PM=2
5
,可求的P(-4,0),則CP=5,CP2=CM2+PM2,即P(-4,0)成立,若
CM
PM
=2
,由圖可判斷不成立; ②當(dāng)∠PCM=90°時(shí),CM=
22+12
=
5
,若
CM
PC
=
1
2
,則PC=2
5
,可求出P(-3,0),則PM=
13
,顯然不成立,若
CM
PC
=2
,則PC=
5
2
,更不可能成立.即求出以P、C、M為頂點(diǎn)的三角形與△AOM相似的P的坐標(biāo)(-4,0).
解答:解:(1)設(shè)所求拋物線(xiàn)的解析式為:y=ax2+bx+c,將A(1,0)、B(-3,0)、D(0,3)代入,
a+b+c=0
9a-3b+c=0
c=3

a=-1
b=-2
c=3

即所求拋物線(xiàn)的解析式為:y=-x2-2x+3.

(2)如圖④,在y軸的負(fù)半軸上取一點(diǎn)I,使得點(diǎn)F與點(diǎn)I關(guān)于x軸對(duì)稱(chēng),
在x軸上取一點(diǎn)H,連接HF、HI、HG、GD、GE,則HF=HI…①
設(shè)過(guò)A、E兩點(diǎn)的一次函數(shù)解析式為:y=kx+b(k≠0),
∵點(diǎn)E在拋物線(xiàn)上且點(diǎn)E的橫坐標(biāo)為-2,將x=-2,代入拋物線(xiàn)y=-x2-2x+3,得y=-(-2)2-2×(-2)+3=3
∴點(diǎn)E坐標(biāo)為(-2,3)…(4分)
又∵拋物線(xiàn)y=-x2-2x+3圖象分別與x軸、y軸交于點(diǎn)A(1,0)、B(-3,0)、
D(0,3),所以頂點(diǎn)C(-1,4)
∴拋物線(xiàn)的對(duì)稱(chēng)軸直線(xiàn)PQ為:直線(xiàn)x=-1,
∴點(diǎn)D與點(diǎn)E關(guān)于PQ對(duì)稱(chēng),GD=GE…②
分別將點(diǎn)A(1,0)、點(diǎn)E(-2,3)
代入y=kx+b,得:
k+b=0
-2k+b=3
解得:
k=-1
b=1

過(guò)A、E兩點(diǎn)的一次函數(shù)解析式為:
y=-x+1
∴當(dāng)x=0時(shí),y=1
∴點(diǎn)F坐標(biāo)為(0,1)…(5分)
∴|DF|=2…③
又∵點(diǎn)F與點(diǎn)I關(guān)于x軸對(duì)稱(chēng),
∴點(diǎn)I坐標(biāo)為(0,-1)
|EI|=
(-2-0)2+[3-(-1)]2
=
22+42
=2
5
…④
又∵要使四邊形DFHG的周長(zhǎng)最小,由于DF是一個(gè)定值,
∴只要使DG+GH+HI最小即可         …(6分)
由圖形的對(duì)稱(chēng)性和①、②、③,可知,
DG+GH+HF=EG+GH+HI
只有當(dāng)EI為一條直線(xiàn)時(shí),EG+GH+HI最小
設(shè)過(guò)E(-2,3)、I(0,-1)兩點(diǎn)的函數(shù)解析式為:y=k1x+b1(k1≠0),
分別將點(diǎn)E(-2,3)、點(diǎn)I(0,-1)代入y=k1x+b1,得:
-2k1+b1=0
b1=-1
解得:
k1=-2
b1=-1

過(guò)I、E兩點(diǎn)的一次函數(shù)解析式為:y=-2x-1
∴當(dāng)x=-1時(shí),y=1;當(dāng)y=0時(shí),x=-
1
2
;
∴點(diǎn)G坐標(biāo)為(-1,1),點(diǎn)H坐標(biāo)為(-
1
2
,0)
∴四邊形DFHG的周長(zhǎng)最小為:DF+DG+GH+HF=DF+EI
由③和④,可知:
    DF+EI=2+2
5

∴四邊形DFHG的周長(zhǎng)最小為2+2
5
.…(7分)

(3)如圖⑤,由(2)可知,點(diǎn)A(1,0),點(diǎn)C(-1,4),
設(shè)過(guò)A(1,0),點(diǎn)C(-1,4)兩點(diǎn)的函數(shù)解析式為:y=k2x+b2
得:
k2+b2=0
-k2+b2=4

解得:
k2=-2
b2=2
,
過(guò)A、C兩點(diǎn)的一次函數(shù)解析式為:y=-2x+2,當(dāng)x=0時(shí),y=2,即M的坐標(biāo)為(0,2);
由圖可知,△AOM為直角三角形,且
OA
OM
=
1
2
,
要使,△AOM與△PCM相似,只要使△PCM為直角三角形,且兩直角邊之比為1:2即可,
設(shè)P(a,0),CM=
22+12
=
5
,且∠CPM不可能為90°時(shí),因此可分兩種情況討論;    
①當(dāng)∠CMP=90°時(shí),CM=
22+12
=
5
,
CM
PM
=
1
2
,則PM=2
5

可求的P(-4,0),
則CP=5,CP2=CM2+PM2,即P(-4,0)成立,
CM
PM
=2
,由圖可判斷不成立;…(10分)
②當(dāng)∠PCM=90°時(shí),CM=
22+12
=
5
,若
CM
PC
=
1
2
,則PC=2
5

可求出P(-3,0),則PM=
13
,
顯然不成立,
CM
PC
=2
,則PC=
5
2
,更不可能成立.
綜上所述,存在以P、C、M為頂點(diǎn)的三角形與△AOM相似,點(diǎn)P的坐標(biāo)為(-4,0).
點(diǎn)評(píng):本題考查了二次函數(shù)的有關(guān)性質(zhì)及應(yīng)用,對(duì)稱(chēng)性的性質(zhì),三角形相似的性質(zhì)與判斷,直角三角形的性質(zhì)和勾股定理,存在性的問(wèn)題,特別是存在性問(wèn)題更是中考的常見(jiàn)考點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,一小孩將一只皮球從A處拋出去,它所經(jīng)過(guò)的路線(xiàn)是某個(gè)二次函數(shù)圖象的一部分,如果他的出手處A距地面的距離OA為1m,球路的最高點(diǎn)B(8,9),則這個(gè)二次函數(shù)的表達(dá)式為
 
,小孩將球拋出了約
 
米(精確到0.1m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖2,一小孩將一只皮球從A處拋出去,它所經(jīng)過(guò)的路線(xiàn)是某個(gè)二次函數(shù)圖象的一部分,如果他的出手處A距地面的距離OA為1 m,球路的最高點(diǎn)B(8,9),則這個(gè)二次函數(shù)的表達(dá)式為_(kāi)_____,小孩將球拋出了約______米(精確到0.1 m).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖2,一小孩將一只皮球從A處拋出去,它所經(jīng)過(guò)的路線(xiàn)是某個(gè)二次函數(shù)圖象的一部分,如果他的出手處A距地面的距離OA為1 m,球路的最高點(diǎn)B(8,9),則這個(gè)二次函數(shù)的表達(dá)式為_(kāi)_____,小孩將球拋出了約______米(精確到0.1 m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011屆河南省周口市初三下冊(cè)26章《二次函數(shù)》檢測(cè)題 題型:填空題

如圖2,一小孩將一只皮球從A處拋出去,它所經(jīng)過(guò)的路線(xiàn)是某個(gè)二次函數(shù)圖象的一部分,如果他的出手處A距地面的距離OA為1 m,球路的最高點(diǎn)B(8,9),則這個(gè)二次函數(shù)的表達(dá)式為_(kāi)_____,小孩將球拋出了約______米(精確到0.1 m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年河南省周口市初三下冊(cè)26章《二次函數(shù)》檢測(cè)題 題型:填空題

如圖2,一小孩將一只皮球從A處拋出去,它所經(jīng)過(guò)的路線(xiàn)是某個(gè)二次函數(shù)圖象的一部分,如果他的出手處A距地面的距離OA為1 m,球路的最高點(diǎn)B(8,9),則這個(gè)二次函數(shù)的表達(dá)式為_(kāi)_____,小孩將球拋出了約______米(精確到0.1 m).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案