(2002•武漢)已知:如圖平行四邊形ABCD中,AC⊥CD,以C為圓心,CA為半徑作圓弧交BC于E,交CD的延長(zhǎng)線于點(diǎn)F,以AC上一點(diǎn)O為圓心OA為半徑的圓與BC相切于點(diǎn)M,交AD于點(diǎn)N.若AC=6cm,OA=2cm.則圖中陰影部分的面積為    cm2
【答案】分析:陰影部分的面積=扇形ECF的面積-△ACD的面積-△OCM的面積-扇形AOM的面積-弓形AN的面積.
解答:解:連接OM,ON,過(guò)點(diǎn)O作OH⊥AN,

∴OM=2,OC=4,OH=1,AN=2HN=2,
∴∠ACM=30°,
∴CD=AB=2,
∴扇形ECF的面積==12π;
△ACD的面積=AC×CD÷2=6
扇形AOM的面積==π;
弓形AN的面積=-×1×2=π-
△OCM的面積=×2×2=2;
∴陰影部分的面積=扇形ECF的面積-△ACD的面積-△OCM的面積-扇形AOM的面積-弓形AN的面積=(π-)cm2
故答案為:(π-).
點(diǎn)評(píng):解決本題的關(guān)鍵是得到陰影部分的組成.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2002年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2002•武漢)已知拋物線交x軸于A(x1,0)、B(x2,0),交y軸于C點(diǎn),且x1<0<x2,(AO+OB)2=12CO+1.
(1)求拋物線的解析式;
(2)在x軸的下方是否存在著拋物線上的點(diǎn)P,使∠APB為銳角?若存在,求出P點(diǎn)的橫坐標(biāo)的范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2002年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:解答題

(2002•武漢)已知一次函數(shù)y=kx+b在x=3時(shí)的值為5,在x=-4時(shí)的值為-9,求這個(gè)一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2002年湖北省武漢市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•武漢)已知拋物線交x軸于A(x1,0)、B(x2,0),交y軸于C點(diǎn),且x1<0<x2,(AO+OB)2=12CO+1.
(1)求拋物線的解析式;
(2)在x軸的下方是否存在著拋物線上的點(diǎn)P,使∠APB為銳角?若存在,求出P點(diǎn)的橫坐標(biāo)的范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2002年湖北省武漢市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•武漢)已知一次函數(shù)y=kx+b在x=3時(shí)的值為5,在x=-4時(shí)的值為-9,求這個(gè)一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2002年全國(guó)中考數(shù)學(xué)試題匯編《圓》(13)(解析版) 題型:解答題

(2002•武漢)已知:如圖,⊙O和⊙O1內(nèi)切于A,直線OO1交⊙O于另一點(diǎn)B、交⊙O1于另一點(diǎn)F,過(guò)B點(diǎn)作⊙O1的切線,切點(diǎn)為D,交⊙O于C點(diǎn),DE⊥AB,垂足為E.
(1)求證:CD=DE;
(2)若將兩圓內(nèi)切改為外切,其它條件不變,(1)中的結(jié)論是否成立?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案